在求极限中,等价无穷小能不能在多项式无穷小之比时使用,如果能,应该注意哪些问题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 20:20:49
在求极限中,等价无穷小能不能在多项式无穷小之比时使用,如果能,应该注意哪些问题
xURAًh菤bYXe,f"dR`x&2uIg/L FSY%k>>=}/FlMZ UĽJ~܋CGjqt,E[jE9"5^MvbyZ$Wn{'3O:EbH~1AyGINTi>8)V1#1/7^#7ic]@{HK2ҫg<06ޭV ՗4[Y>Dz/ڶ#ϬM5A[\ 4+/Bܬ,Na_+B/)Z*jPIn36QhQ#%de4bYA0>

在求极限中,等价无穷小能不能在多项式无穷小之比时使用,如果能,应该注意哪些问题
在求极限中,等价无穷小能不能在多项式无穷小之比时使用,如果能,应该注意哪些问题

在求极限中,等价无穷小能不能在多项式无穷小之比时使用,如果能,应该注意哪些问题
当为乘积时可用等价无穷小代换求极限
但是当加减时就需要先计算
举个例子
(sinx-tanx)/x^3 x趋近于0的极限
sinx=x+f1(x) tanx=f2(x)
sinx-tanx=f1(x)-f2(x)=f(x)
[f1(x)f2(x)f(x)都是x高阶无穷小]
因为二者相减把已知的部分都抵消掉了
剩下的部分是f(x)是一个未知阶数的无穷小(只知道它比x高阶) 可能是x^2的等价无穷小 这是极限为∞ 也可能是x^3的等价无穷小 这时极限为常数 如果是x^4的等价无穷小 那么极限就是0了
所以当加减变换把已知部分抵消掉的时候不能用等价无穷小代换
否则就可以
比如说sinx+tanx=2x+f(x) 就是0了
还有比较特殊的情况 比如说sinx-tanx/x x趋近于0的极限
这时等价无穷小代换可得f(x)/x 因为f(x)是x的高阶无穷小 所以极限为零
总的来说就是不能肯定的时候 代换时加上高阶无穷小余项
其他的要具体问题具体分析,一般的:
无穷小× 无穷小= 无穷小
无穷小+ 无穷小= 无穷小
无穷小- 无穷小= 无穷小
除就不能用了
换句话说:当乘积形式的分子分母同时趋于零时,就可以用了.如果分子分母中有加减法时,慎用.最好改用洛必达法则(分子分母同时为未定式时)来运算.