limx趋近于0(1+KX)^X分之2=e的三次方 求K 设积分xf(x)dx=arcsinx+c,求积分f(x)分之1dx

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 20:15:30
limx趋近于0(1+KX)^X分之2=e的三次方 求K 设积分xf(x)dx=arcsinx+c,求积分f(x)分之1dx
x)̭xOva~Og\ӎ';lSjyٚϦTx[ź}ϗ*H*OM,J.̫NHd!FT$J;Fvvf~-\4&lbٚqF@XlBcuEF&` YqF`aht8М },H,` ]C}#M0(i`3vK $ف&7

limx趋近于0(1+KX)^X分之2=e的三次方 求K 设积分xf(x)dx=arcsinx+c,求积分f(x)分之1dx
limx趋近于0(1+KX)^X分之2=e的三次方 求K 设积分xf(x)dx=arcsinx+c,求积分f(x)分之1dx

limx趋近于0(1+KX)^X分之2=e的三次方 求K 设积分xf(x)dx=arcsinx+c,求积分f(x)分之1dx
lim(x->0)(1+kx)^(2/x)=lim(x->0)[(1+kx)^(1/kx)]^(2k)=e^2k=e^3
k=3/2
∫xf(x)dx=arcsinx+C
xf(x)=1/√(1-x^2)
f(x)=1/[x√(1-x^2)
∫dx/f(x)=∫x√(1-x^2)dx=(-1/2)∫√(1-x^2)d(1-x^2)=(-1/2)*(2/3)√(1-x^2)^3+C=(-1/3)√(1-x^2)^3+C