已知cot(a+b)=0求证sin(a+2b)=sina
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 21:37:03
已知cot(a+b)=0求证sin(a+2b)=sina
已知cot(a+b)=0求证sin(a+2b)=sina
已知cot(a+b)=0求证sin(a+2b)=sina
证明:
∵cot(a+b)=cos(a+b)/sin(a+b)=0
又∵sin(a+b) 为分母,不能等0
∴cos(a+b)=0
∵cos(a+b)=cosacosb-sinasinb=0
所以cosacosb=sinasinb
sin(a+2b)=sinacos2b+sin2bcosa
=sina[(cosb)^2-(sinb)^2]+2sinbcosbcosa
=sina[(cosb)^2-(sinb)^2]+2sina(sinb)^2
=sina[(cosb)^2-(sinb)^2+2(sinb)^2]
=sina[(cosb)^2+(sinb)^2]
=sina
证明:由COS(A+B)=0,有:
COS(A+B)=cosAcosB-sinAsinB=0
所以cosAcosB=sinAsinB
SIN(A+2B)=sinAcos2B+sin2BcosA
=sinA[(cosB)^2-(sinB)^2]+2sinBcosBcosA
=sinA[(cosB)^2-(sinB)^2]+2sinA(sinB)^2
=...
全部展开
证明:由COS(A+B)=0,有:
COS(A+B)=cosAcosB-sinAsinB=0
所以cosAcosB=sinAsinB
SIN(A+2B)=sinAcos2B+sin2BcosA
=sinA[(cosB)^2-(sinB)^2]+2sinBcosBcosA
=sinA[(cosB)^2-(sinB)^2]+2sinA(sinB)^2
=sinA[(cosB)^2-(sinB)^2+2(sinB)^2]
=sinA[(cosB)^2+(sinB)^2]
=sinA不懂的欢迎追问,如有帮助请采纳,谢谢!
收起