已知cot(a+b)=0求证sin(a+2b)=sina

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/05 11:24:32
已知cot(a+b)=0求证sin(a+2b)=sina
xSAKA+u[teλN.uJQHAiVb%_ͬf,a`}fV&hŽk2Ggݼ9Pch@fj֡Q&?hBTgú>K`&ES\4\8Z:cĩxTϵޤ_ہ aE&֜ʹGSD>BaC G!CgՔoT 5Κ4Qֺ;I@ /mY^Kmp 5Xrk1q`7C,NH`H5dScX؁ikZh!T~4V̻Uo<^ zӦ^?-+|afڻCK

已知cot(a+b)=0求证sin(a+2b)=sina
已知cot(a+b)=0求证sin(a+2b)=sina

已知cot(a+b)=0求证sin(a+2b)=sina
证明:
∵cot(a+b)=cos(a+b)/sin(a+b)=0
又∵sin(a+b) 为分母,不能等0
∴cos(a+b)=0
∵cos(a+b)=cosacosb-sinasinb=0
所以cosacosb=sinasinb
sin(a+2b)=sinacos2b+sin2bcosa
=sina[(cosb)^2-(sinb)^2]+2sinbcosbcosa
=sina[(cosb)^2-(sinb)^2]+2sina(sinb)^2
=sina[(cosb)^2-(sinb)^2+2(sinb)^2]
=sina[(cosb)^2+(sinb)^2]
=sina

证明:由COS(A+B)=0,有:
COS(A+B)=cosAcosB-sinAsinB=0
所以cosAcosB=sinAsinB
SIN(A+2B)=sinAcos2B+sin2BcosA
=sinA[(cosB)^2-(sinB)^2]+2sinBcosBcosA
=sinA[(cosB)^2-(sinB)^2]+2sinA(sinB)^2
=...

全部展开

证明:由COS(A+B)=0,有:
COS(A+B)=cosAcosB-sinAsinB=0
所以cosAcosB=sinAsinB
SIN(A+2B)=sinAcos2B+sin2BcosA
=sinA[(cosB)^2-(sinB)^2]+2sinBcosBcosA
=sinA[(cosB)^2-(sinB)^2]+2sinA(sinB)^2
=sinA[(cosB)^2-(sinB)^2+2(sinB)^2]
=sinA[(cosB)^2+(sinB)^2]
=sinA不懂的欢迎追问,如有帮助请采纳,谢谢!

收起