已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,tan a=3/4,EH和HF是方程x^2-(k+2)x+4k=0的两个实数根.(1)求EH和HF的长;(2

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:43:59
已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,tan a=3/4,EH和HF是方程x^2-(k+2)x+4k=0的两个实数根.(1)求EH和HF的长;(2
xV]OG+"E b/ i?/תܷ P b1_%Mb @blc:O =3k/%J@6YP8K;ScN^6>͐сXtEj9Zz 7ov10̀n #YҖ j4ʡo1/q&[lDx7dʱf}ϳ|̐oD@dJ2@F#iٽvl$`7Ue=f0O8;Ά#jJ Ex8P e`rր:Va'lsS C=gЋ[aM3ʋ\U+< ut9b

已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,tan a=3/4,EH和HF是方程x^2-(k+2)x+4k=0的两个实数根.(1)求EH和HF的长;(2
已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,
tan a=3/4,EH和HF是方程x^2-(k+2)x+4k=0的两个实数根.
(1)求EH和HF的长;(2)求BC的长

已知,三角形ABC内接于圆O,AD是圆O直径,点E、F分别在AB、AC的延长线上,EF交圆O于M、N,交AD与点H,H是OD的中点,弧MD=弧DN,EH-HF=2,设角ACB=a,tan a=3/4,EH和HF是方程x^2-(k+2)x+4k=0的两个实数根.(1)求EH和HF的长;(2
(1)根据根与系数的关系,可以得到EH+HF=k+2②,EH•HF=4k>0③,再结合已知EH-HF=2,可求k的值,再把k的值代入方程,解方程可求EH、HF,从而可求EH;
(2)连接BD、CD,由于AD是直径,根据垂径定理可知,AD⊥EF,再利用同角的余角相等,可知∠E=∠1,再利用圆周角的性质,可知∠E=∠1=∠α,从而tan∠E=34,结合EH=8,可求AH,再利用勾股定理可求AE,在Rt△AHF中,利用勾股定理可求AF,在Rt△ABD中,由于tan∠1=34,可设AB=3m,BD=4m,利用勾股定理可知AD=5m,而H是OD中点,从而AD=43AH,由于AH=6,可求AD、m的值,从而可求AB,利用∠α=∠E,再加上一个公共角,可证△ABC∽△AFE,可得比例线段,容易求出BC.
(1)依题意,及一元二次方程根与系数关系,得
△=[-(k+2)]2-4×4k>0,①
EH+HF=k+2,②
EH•HF=4k>0,③
又EH-HF=2④
由②、③、④得k=12,
当k=12时,①成立.
把k=12代入原方程解得x1=8,x2=6,
∴EH=8,HF=6.
(2)解法一:
连接BD,∵∠1=∠a,
又∵AD是⊙O的直径,
∴∠ABD=90°
∵MD̂=DN̂,
∴AD⊥EF,即∠AHE=∠AHF=90°,
∴∠E=∠1=∠a,
在Rt△AEH中,tanE=AHEH=tana=34,又EH=8,
∴AH=6,
由勾股定理得AE=10,
在Rt△AHF中,AH=HF=6,
由勾股定理得AF=62
在Rt△ABD中,tan∠1=ABBD=tana=34,
设AB=3m,则BD=4m,由勾股定理得AD=5m
∵H是OD的中点,
∴AH=34AD
∴AD=43AH=43×6=8
∴5m=8,解得m=85,
∴AB=3m=245,
∵∠E=∠a,∠BAC=∠FAE,
∴△ABC∽△AFE
∴BCEF=ABAF
∴BC=AB(EH+HF)AF=245×(8+6)62=2852;
解法二:
同解法一求出AE=10,AD=8
连接CD,
∵AH=HF,且AH⊥HF,
∴∠HAF=∠F=45°
∵AD为⊙O直径,
∴∠ACD=90°,∠ADC=45°
∴AC=AD•sin∠ADC=AD•sin45°=42,
以下同解法一求得BC=AC•EFAE=42×1410=2852.没有根号 你慢慢理解吧

已知,如图,△ABC是圆O内接三角形,AF是圆O的直径,AD⊥BD于D,交圆O于点E 求证:BF=CE 已知,三角形ABC内接于圆O,∠CAD=∠ABC,判断直线AD与圆O的位置关系 三角形ABC是圆O的内接三角形,AF是圆O的直径,AD垂直BC于D,求证:BF=CE 三角形ABC内接于圆O,AD是圆O的直径,交BC于点E,若DE=2,OE=3,则tan AC*BC=AE*AD 三角形ABC内接于圆O,AE是圆O的直径,AD是三角形ABC中BC边上的高求证AC*BC=AE*AD 三角形ABC是圆O的内接三角形,AE垂直BC于E,D是⌒BC的中点,连结OA,AD.求证:AD平分角OAE 三角形ABC内接于圆O,AD垂直于BC于D,若AB=5,AC=3,AD=2,则圆O的直径是多少? 三角形ABC内接于圆O,AE是圆O的直径,AD垂直BC与点D.求证角BAE与角CAD相等.抱歉.. 如图,三角形ABC内接于圆O,AD平分角BAC,延长BC到P,使PD=PA,求证:D是圆O的切线 如图 三角形ABC内接于圆O,AE是圆O的直径 AD垂直BC 于点D,AE是圆O的直径,求证:AB×AC=AD×AE 三角形ABC是圆O的内接三角形,AD垂直于BC,AB等于10,AC等于6,AD等于4,求半径长度 三角形ABC是圆O的内接三角形,AD垂直于BC,AB等于10,AC等于6,AD等于4,求半径长度 已知三角形ABC内接于圆O,BC是圆O的直径,AD是三角形ABC的高,OE平行AC,OE交AB于E.1.求证AE=BE2.设圆O半径为R,求证AE*AC/AD=R 如图,三角形ABC内接于圆O 如图,三角形ABC内接于圆O,AH垂直BC于H,AD平分角BAC,D在圆O上求证:AD平分HAO 三角形ABC内接于圆O,AD垂直于BC,AD等于2CM,AB=4cm AC=3cm 则圆O的直径是多少 三角形ABC内接于圆O,AD垂直于BC,AD等于2CM,AB=4cm AC=3cm 则圆O的直径是多少 已知:如图,三角形ABC内接于圆O,D为BS弧的中点,AE垂直BC于E,求证:AD平分角OAE