一道几何难题在△ABC中,AB=AC,E在AB上,D在AC上,∠BCE=60°,∠DBC=50°,∠A=20°,求∠CED的度数.答案是30°
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/04 04:00:33
一道几何难题在△ABC中,AB=AC,E在AB上,D在AC上,∠BCE=60°,∠DBC=50°,∠A=20°,求∠CED的度数.答案是30°
一道几何难题
在△ABC中,AB=AC,E在AB上,D在AC上,∠BCE=60°,∠DBC=50°,∠A=20°,求∠CED的度数.
答案是30°
一道几何难题在△ABC中,AB=AC,E在AB上,D在AC上,∠BCE=60°,∠DBC=50°,∠A=20°,求∠CED的度数.答案是30°
原题在这,但不知道 你的问题是不是错了【求∠CED的度数】?
既然知道等腰,顶角度数,等于知道了底角度数,也就知道了(底角-题干给的那两个那小部分)各自的度数,那就等于知道了这个图形每一个具体的角度,不难的.过程呢?我都写成这样了再看不懂我也没办法,提示你一个 jiaoABC=80,jiaoDBC=50,所以jiaoABD=30,然后还有一个对顶角的关系,会了吧?要具体的都这样还不会tangram_guid_1360112427586?这个三角形里每一个小...
全部展开
既然知道等腰,顶角度数,等于知道了底角度数,也就知道了(底角-题干给的那两个那小部分)各自的度数,那就等于知道了这个图形每一个具体的角度,不难的.
收起
∵AB=AC,∠A=20°,
∴∠ABC=∠ACB=80°,
∴∠ABD=20°,
作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG.
∴四边形DFBC为等腰梯形.
∵∠DBC=∠FCB=60°,
∴△BGC,△DGF都是正三角形,
即BG=CG,
∵∠BCE=50°,∠EBC=80°,
∴∠BEC=5...
全部展开
∵AB=AC,∠A=20°,
∴∠ABC=∠ACB=80°,
∴∠ABD=20°,
作DF∥BC,与AB相交于F,连接CF,设CF与BD相交于G,连接EG.
∴四边形DFBC为等腰梯形.
∵∠DBC=∠FCB=60°,
∴△BGC,△DGF都是正三角形,
即BG=CG,
∵∠BCE=50°,∠EBC=80°,
∴∠BEC=50°,
即BE=BC,知△BGE是等腰三角形.
得:∠BGE=80°,∠FGE=40°.
又因∠EFG=∠BDC=40°,
∴△EFG是等腰三角形,EF=GE.
∵DF=DG,
∴△DFE≌△DGE.
∴DE平分∠FDG,
∴∠EDB=30°,
∴∠AED=∠EDB+∠EBD=50°.
答:∠AED的度数是50°.
望采纳~~~~~~~~~~~~~~~~~
收起