求不定积分∫1/(1+t)dx此处的t就是X开三倍根号 因为不好打 所以用t表示

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 04:11:23
求不定积分∫1/(1+t)dx此处的t就是X开三倍根号 因为不好打 所以用t表示
xOK0ƿ@5%ң9XdJtnhꗑ$W0ME^o}yR'pd]/n4>y xch`$iw0tujz@E`’K"c6;0dbP4*Dx} nl5~l'6ѳm) 4a Y&Կ#1/9 (uj}YʖZiEG?lӲݶEi:5ƳeRV75 *Mh@}5,R,G fqk*G W[

求不定积分∫1/(1+t)dx此处的t就是X开三倍根号 因为不好打 所以用t表示
求不定积分∫1/(1+t)dx
此处的t就是X开三倍根号 因为不好打 所以用t表示

求不定积分∫1/(1+t)dx此处的t就是X开三倍根号 因为不好打 所以用t表示
令t=三次根号下x,则x=t³,dx=3t²dt
所以原式=3∫t²/(1+t)dt=3∫[(1+t-1)²/(1+t)dt
=3∫[1+t+1/(1+t)-2]dt
=3[-t+1/2t²+ln(1+t)]+C
其中t=三次根号下x

x^(1/3)=t x=t^3,dx=3t^2dt
∫1/(1+t)dx
=∫3t^2dt/(1+t)
=3∫(t^2-1+1)dt/(1+t)
=3∫(t-1+1/(1+t))dt
=3(t^2/2-t+ln(1+t))+C
=3(x^(2/3)/2-x^(1/3)+ln(1+x^(1/3)))+C