已知方程y=tan(y-x)确定了y=y(x) 求dy

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 16:00:28
已知方程y=tan(y-x)确定了y=y(x) 求dy
x){}KM|EwmIbFn랮dW[mF³M)6IE$/!W685,gQkRPP@J!WF2ԏ6H/Kj"lI.F55E,F 1g0Ph^XFJn [)IMzR*3z y|].TaOv/1,A $i 2 `yf

已知方程y=tan(y-x)确定了y=y(x) 求dy
已知方程y=tan(y-x)确定了y=y(x) 求dy

已知方程y=tan(y-x)确定了y=y(x) 求dy
y=tan(y-x)
y'=[sec(y-x)]^2*(y'-1)
=[sec(y-x)]^2*y'-[sec(y-x)]^2
y'=[sec(y-x)]^2/ {[sec(y-x)]^2-1}
=1/[1-(cos(y-x))^2]
=[csc(y-x)]^2
dy=[csc(y-x)]^2dx

dy=1/cos^2(y-x)*(dy-dx)
dx=(1-cos^2(y-x))dy
dy=dx/sin^2(y-x)

y'=sec^2(y-x)*(y'-1)
解出来y'就可以了
y'=sec^2(y-x)/tan^2(y-x)
=csc^2(y-x)
dy=csc^2(y-x)dx