求y=(cosx-3)/(cosx+3)的最值
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 22:18:53
求y=(cosx-3)/(cosx+3)的最值
求y=(cosx-3)/(cosx+3)的最值
求y=(cosx-3)/(cosx+3)的最值
令cosx=t,则t∈[-1,1]
y=(t-3)/(t+3)
=[(t+3)-6]/(t+3)
=1-6/(t+3)
注:这个过程叫分离常数,求函数值域的一种重要方法.
t∈[-1,1]
则:t+3∈[2,4]
1/(t+3)∈[1/4,1/2]
-6/(t+3)∈[-3,-3/2]
1-6/(t+3)∈[-2,-1/2]
即:y∈[-2,-1/2]
所以,y=(cosx-3)/(cosx+3)的最大值为-1/2,最小值为-2
y=(cosx-3)/(cosx+3)
y(cosx+3)=cosx-3
ycosx+3y=cosx-3
3y+3=cosx-ycosx
(1-y)cosx=3y+3
则:cosx=(3y+3)/(1-y)
然后用有界性:cosx∈[-1,1]
解不等式:-1≦(3y+3)/(1-y)≦1
ps:个人推荐用第一种方法,第二种方法最后那个不等式对学生来说很难解对.
最大值为-1/2 最小值为-2
y=(cosx-3)/(cosx+3)=1-6/(cosx+3),而cosx介于-1与1之间,由此思路。
最大值-1/2,最小值-2
函数y=(cosx-3)/(cosx+3) 可以设直线L斜率 y=k=[cosx-3]/[cosx-(-3)] 即令动点A(x0,y0)与定点B(-3,3)形成的直线AB的斜率取值。动点A轨迹为圆心(0,0)而且半径为1的圆。 所以可以构造直线和圆 如上图 所以直线的斜率取值范围应该是B点与圆的切线范围 令直线AB的斜率为k' ,所以直线AB方程 y-3=k'(x+3) 即k'x-y+3k'-3=0 所以圆心O到直线AB的距离d=(3k'-3)/根号下(1+k'平方)≤1 所以 d平方=(3k'+3)平方/(1+k'平方)≤1 即 4k'平方+9k'+4≤0 即 (2k'+1)(2k'+4))≤0 所以 -2≤ k'≤-1/2 所以函数的值域为 -2≤ y≤-1/2