函数f(x)=(ax^2+2)\(3x+b)是奇函数且f(2)=5\3 (1)实数a,b的值(2)判断f(x)在(-∞,-1)上的单调性

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 17:59:45
函数f(x)=(ax^2+2)\(3x+b)是奇函数且f(2)=5\3 (1)实数a,b的值(2)判断f(x)在(-∞,-1)上的单调性
xQ=N07lj˱#9IU2 5E!Q aPaE> f8& /;wb0|$j",._GLK-Wn3Fz߷>Q<

函数f(x)=(ax^2+2)\(3x+b)是奇函数且f(2)=5\3 (1)实数a,b的值(2)判断f(x)在(-∞,-1)上的单调性
函数f(x)=(ax^2+2)\(3x+b)是奇函数且f(2)=5\3 (1)实数a,b的值(2)判断f(x)在(-∞,-1)上的单调性

函数f(x)=(ax^2+2)\(3x+b)是奇函数且f(2)=5\3 (1)实数a,b的值(2)判断f(x)在(-∞,-1)上的单调性
f(x)=(ax^2+2)/(3x+b)
f(-x)=(ax^2+2)/(-3x+b)=-f(x)=-(ax^2+2)/(3x+b)=(ax^2+2)/(-3x-b)
所以得到b=0;
f(2)=5/3, (2a+2)/(3*2)=5/3, 2a+2=10, a=2;
所以 f(x)= (2x^2+2)/(3x),
f(x)求导,f'(x)=2/3(1-(1/x)^2),当x小于-1时,f'(x)>0,所以单调增