若F(x)=f(3f(4f(x))),f(0)=0,f'(0)=2,求F'(0)如题
来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 08:54:48
x){ѽMB6M8M$
I0д5ISF:66O5\4&H$m`
Pv6d[tI @XE*@ƨ#cA&i iBZZFZ&ZFf6yvPـ9}Աaj#h'VUM@54¥V0 @X(BZFqpei" μ
若F(x)=f(3f(4f(x))),f(0)=0,f'(0)=2,求F'(0)如题
若F(x)=f(3f(4f(x))),f(0)=0,f'(0)=2,求F'(0)
如题
若F(x)=f(3f(4f(x))),f(0)=0,f'(0)=2,求F'(0)如题
复合求导:
F'(x)=f'(3f(4f(x)))3f'(4f(x)))4f'(x)
F'(0)=2*3*2*4*2=96
F(x)=f(3f(4f(x)))
∴
F'(x)
=f'(3f(4f(x)))*3*[f(4f(x))]'
=3f'(3f(4f(x)))*f'(4f(x))*4*f'(x)
=12f'(3f(4f(x)))*f'(4f(x))*f'(x)
故
F'(0)
=12f'(3f(4f(0)))*f'(4f(0))*f'(0)
=12f'(0)*f'(0)*f'(0)
=12*2^3
=12*8
=96.