急 (12 21:16:10)1/(4-X) + 1/(X-2)(X-3) + 1/(X-3)(X-4) 提示:1/N(N+1)=1/N-1/(N+1)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/02 15:19:47
急 (12 21:16:10)1/(4-X) + 1/(X-2)(X-3) + 1/(X-3)(X-4) 提示:1/N(N+1)=1/N-1/(N+1)
急 (12 21:16:10)
1/(4-X) + 1/(X-2)(X-3) + 1/(X-3)(X-4) 提示:1/N(N+1)=1/N-1/(N+1)
急 (12 21:16:10)1/(4-X) + 1/(X-2)(X-3) + 1/(X-3)(X-4) 提示:1/N(N+1)=1/N-1/(N+1)
1/(4-X)+1/(X-2)-1/(X-3) +1/(X-3)-1/(X-4)
=2/(4-X) +1/(X-2)
=(2X-4+4-X)/(X-2)(4-X)
=X/(X-2)(4-X)
-1/(X-2)
原式=1/(4-x)+1/(x-3)-1/(x-2)+1/(x-4)-1/(x-3)=1/(2-x)
不是有提示么
解
原式=1/(4-x)+1/(x-3)-1/(x-2)+1/(x-4)-1/(x-3)
=-1/(x-4)+1/(x-3)-1/(x-2)+1/(x-4)-1/(x-3)
=-1/(x-2)
=1/(2-x)
1/(x-2)
原式=1/(4-X)+1/(X-2)-1/(X-3)+1/(X-3)-1/(x-4)=1/(X-2)
原式 = -1/(x-4) + 1/(x-3) - 1/(x-2) + 1/(x-4) - 1/(x-3)
= -1/(x-2)
= 1/(2-x)
(这是最简单的Partial Fraction一类的问题,通常有三种解决方法:Substitution, Comparision of Coefficient and Covering Up。本题...
全部展开
原式 = -1/(x-4) + 1/(x-3) - 1/(x-2) + 1/(x-4) - 1/(x-3)
= -1/(x-2)
= 1/(2-x)
(这是最简单的Partial Fraction一类的问题,通常有三种解决方法:Substitution, Comparision of Coefficient and Covering Up。本题极为简单,一眼就能看出Simple Fraction的形式。主要用在积分的简化。)
收起
=1/(4-X)+1/(X-3)-1/(X-2)+ 1/(X-4)-1/(X-3)
=-1/(X-4)+1/(X-4)+1/(X-3)-1/(X-3)-1/(X-2)
前四项两两抵消掉,剩下
=-1/(X-2)