=2[1/log3(36)+1/log2(36)] =2[log36(3)+log36(2)]=2[1/log3(36)+1/log2(36)]=2[log36(3)+log36(2)] 这也是换底的一种?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/16 18:06:51
x)56O7063@XHLXS0Ҍũjg>9ٌz=5';/ﵷI*'nz`$Bf`YӊKez6yvPgـ9Oved r
=2[1/log3(36)+1/log2(36)] =2[log36(3)+log36(2)]=2[1/log3(36)+1/log2(36)]=2[log36(3)+log36(2)] 这也是换底的一种?
=2[1/log3(36)+1/log2(36)] =2[log36(3)+log36(2)]
=2[1/log3(36)+1/log2(36)]
=2[log36(3)+log36(2)] 这也是换底的一种?
=2[1/log3(36)+1/log2(36)] =2[log36(3)+log36(2)]=2[1/log3(36)+1/log2(36)]=2[log36(3)+log36(2)] 这也是换底的一种?
您好是的.
不是
为什么log3(2)=1/log2(3).
log2 24-1/log3 2=
已知log3^(a+1)=2 ,则log2^a=?
计算(log3 2)(log2 6-1)
log2 1-lg3×log3 2-lg5
log2 1-lg3×log3 2-lg5
log2(2)+log5(1)-log1/3(1/27)+[3^log3(5)]^2+3^-log3(2)=?
log2(3)+log3(5)+log3(2)=?
解方程:log4{2log3[1+log2(1+3log2 x)]}=1/2
计算(log3(2))*(log2(6-1))=?__________尤其是(log2(6-1))=?
(log2 6)×(log3 6)-(log2 3+log3 2)=
(log2 6)×(log3 6)-(log2 3+log3 2)=
log2(3)*log3(2)=?
(log3^2)(log2^3)=
log3^2*log5^7/log9^1/7*log125^82.log2^3=1-a/a,则log3^12=
log3^36-log3^4+log2(log2^16)+8^2/3+(27/8)^-1/3+log8^27/log4^9怎么算啊,不好意思哦,我已经没分啦.麻烦一下写一写log2(log2^16) (27/8)^-1/3 log8^27/log4^9
log5[log3(log2^x)]=1,x=
已知log3 m=-1/log2 3,则m=