f(x)=sin(2x-π/4)-2√2sin²x的最小正周期注:2√2sin²x,sin²x不在根号下

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 16:39:40
f(x)=sin(2x-π/4)-2√2sin²x的最小正周期注:2√2sin²x,sin²x不在根号下
x)K{N< ӨB| P@Q,#uY-4tΊg v>dGMR>%ցj~ =Q`TJSAWfFQXXQEr~1HPeTrAʵ4:4Z@FP5@.X'\.Om0¦I&l~B`hhB.p31l @L(%

f(x)=sin(2x-π/4)-2√2sin²x的最小正周期注:2√2sin²x,sin²x不在根号下
f(x)=sin(2x-π/4)-2√2sin²x的最小正周期
注:2√2sin²x,sin²x不在根号下

f(x)=sin(2x-π/4)-2√2sin²x的最小正周期注:2√2sin²x,sin²x不在根号下
f(x) = sin(2x-π/4) - 2√2sin^2x
= sin2xcosπ/4 - cos2xsinπ/4 - √2*(2sin^2x)
= √2/2 sin2x - √2/2 cos2x - √2*(1-cos2x)
= √2/2 sin2x - √2/2 cos2x - √2 + √2cos2x
= √2/2 sin2x + √2/2 cos2x - √2
= sin2xcosπ/4 + cos2xsinπ/4 - √2
= sin(2x+π/4) - √2
最小正周期 = 2π/2 = π