1 3 4 7 11 18 问第2009个数是什么

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 19:08:37
1 3 4 7 11 18 问第2009个数是什么
xU]OP+R ?A4DH붋eIQY`Am( UA/+sNj)y DFbƙ 0$cgkV"M{j ͸|d:8ϝ0̽Yf6xCOdP؇)Jχ^.e[~qe9Px *@!AkQ(!!O~Y9ضcnQ).*\$azUV~a:Eeto\~pP4ogrw+8Q7[PtCOКJfZ/Qbп_/ V)f-:8NRmʵeVi[1T[l}nk_jsKT+]x5{JGh3s9#D

1 3 4 7 11 18 问第2009个数是什么
1 3 4 7 11 18 问第2009个数是什么

1 3 4 7 11 18 问第2009个数是什么
这是斐波那契数列
a(n+2)=an+a(n+1)
见http://baike.baidu.com/view/568949.htm

a1=1
a2=3
a3=a1+a2
......
an=a(n-2)+a(n-1)
递推公式吧
好像是高中学的
现在忘了

a1=1
a2=3
a3=a1+a2
......
做错了

1 3 4 7 11 18
从第三个数开始,数值为前两项之和。
即a(n+2)=a(n+1)+a(n)
参考百度百科
待定系数法构造等比数列1(初等代数解法)   
设常数r,s。   
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。  
 则r+s=1, -rs=1。  
 n≥3时,有。   F(n)-r...

全部展开

1 3 4 7 11 18
从第三个数开始,数值为前两项之和。
即a(n+2)=a(n+1)+a(n)
参考百度百科
待定系数法构造等比数列1(初等代数解法)   
设常数r,s。   
使得F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。  
 则r+s=1, -rs=1。  
 n≥3时,有。   F(n)-r*F(n-1)=s*[F(n-1)-r*F(n-2)]。   
F(n-1)-r*F(n-2)=s*[F(n-2)-r*F(n-3)]。   
F(n-2)-r*F(n-3)=s*[F(n-3)-r*F(n-4)]。  
 ……   
F(3)-r*F(2)=s*[F(2)-r*F(1)]。  
 联立以上n-2个式子,得:  
 F(n)-r*F(n-1)=[s^(n-2)]*[F(2)-r*F(1)]。  
 ∵s=1-r,F(1)=F(2)=1。  
 上式可化简得:  
 F(n)=s^(n-1)+r*F(n-1)。  
 那么:   F(n)=s^(n-1)+r*F(n-1)。
  = s^(n-1) + r*s^(n-2) + r^2*F(n-2)。
  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) + r^3*F(n-3)。  
 ……   = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)*F(1)。
  = s^(n-1) + r*s^(n-2) + r^2*s^(n-3) +……+ r^(n-2)*s + r^(n-1)。  
 (这是一个以s^(n-1)为首项、以r^(n-1)为末项、r/s为公比的等比数列的各项的和)。
  =[s^(n-1)-r^(n-1)*r/s]/(1-r/s)。  
 =(s^n - r^n)/(s-r)。  
 r+s=1, -rs=1的一解为 s=(1+√5)/2,r=(1-√5)/2。  
 则F(n)=(√5/5)*{[(1+√5)/2]^n - [(1-√5)/2]^n}。

收起