一个n阶实对称矩阵一定有n个特征值吗(包括重根)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 13:26:07
一个n阶实对称矩阵一定有n个特征值吗(包括重根)
x] @n`p/ڀRBQb$N93Ε[h|43hvфB+槄¿5 M0 0[`:bH]m+#?@1VsZx_e ,=1,><5^E2kK*t$ɂfh6MsE ۄ4O2лZ.'

一个n阶实对称矩阵一定有n个特征值吗(包括重根)
一个n阶实对称矩阵一定有n个特征值吗(包括重根)

一个n阶实对称矩阵一定有n个特征值吗(包括重根)
当然
任何一个n阶复方阵都有n个复特征值(计重数),根本不需要实对称这么强的条件

一个n阶实对称矩阵一定有n个特征值吗(包括重根) n阶矩阵就一定有n个特征值吗 刘老师 n阶矩阵是不是一定有n个特征值? n阶矩阵一定有n个特征值吗!举例说明!我要实例说明!!不一定有n个特征值 对于n阶实对称矩阵A,结论______正确A、一定有n个不同的特征值B、它的特征值一定是整数C、属于不同特征值的特征向量必线性无关,但是不一定正交备注:本来是有4个选择的,不过有一个打不出 n阶实对称,非奇异矩阵一定具有n个不同的特征值吗?除了对角矩阵且对角线元素有相同的矩阵外不懂的别人回答! n阶实对称矩阵一定有n个特征向量,这句话对么? 已知n阶方阵A与某对角矩阵相似,则A.A有n个不同的特征值B.A一定是n阶实对称矩阵C.A有n个线性无关的特征向量D.A的属于不同特征值的特征向量正交 已知A是三阶实对称矩阵,特征值有3个,只有这些条件可以知道每个特征值的特征向量有几个吗?3阶的实对称矩阵是不是一定有3个特征值? 如何证明一个n阶矩阵有n个不同的特征值 对称正定矩阵的特征值问题最近学数学有点学得头大,有些问题想不清楚了.现在我已经知道n阶对称正定矩阵一定有n个正的特征值了.但是衍生出了几个小问题:1.可以说对称正定矩阵是满秩的 请问:n阶实对称矩阵,其相同的特征值所对应的特征向量,一定不正交吗?n阶实对称矩阵,不同的特征值所对应的特征向量一定正交.但如果遇到重根,即相同的特征值所对应的特征向量,一定不正 请问刘老师:关于相同特征值对应的特征向量一定线性相关性的问题一个矩阵如果与其对角矩阵相似,且该矩阵有n重特征值,那么对应这n重特征值一定有n个线性无关特征向量吗?如果矩阵不与 对称正定矩阵的特征值问题2最近学数学有点学得头大,有些问题想不清楚了.现在我已经知道n阶对称正定矩阵一定有n个正的特征值了.但是衍生出了几个小问题:2.现在退一步,对于对称方阵A( 对称正定矩阵的特征值问题3最近学数学有点学得头大,有些问题想不清楚了.现在我已经知道n阶对称正定矩阵一定有n个正的特征值了.但是衍生出了几个小问题:3.对于对称方阵A(不一定正定 对称正定矩阵的特征值问题4最近学数学有点学得头大,有些问题想不清楚了.现在我已经知道n阶对称正定矩阵一定有n个正的特征值了.但是衍生出了几个小问题:3.对于正定阵A来说,它一定能有 n阶实对称矩阵对角化1、实对称矩阵一定可以相似对角化,因为它一定有n个线性无关的特征向量.并且它还可以用正交矩阵相似对角化.那么当一个普通矩阵有n个线性无关的特征向量时,它也一 已知3阶实对称矩阵A每一行的和均为3,且其特征值均为正整数,|A|=3,求矩阵A.为什么因为3一定是一个特征值对于n阶矩阵而言,每行和为a的话,那么a一定是其一个特征值么?怎么证明,求详解,