高数求极限问题!lim 根号下(2+x) -2\ 根号下(3x+3) -3 x趋近于2 还有一个 lim 根号下(x^2+x+1) -根号下(x^2-x+1) x趋近于无穷

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 14:57:49
高数求极限问题!lim 根号下(2+x) -2\ 根号下(3x+3) -3 x趋近于2 还有一个 lim 根号下(x^2+x+1) -根号下(x^2-x+1) x趋近于无穷
xTNQ):f9̅xi¢9P '5&մ&*j1&&ZD < =\f >kf3tuf{sBxR?z%(cR_J$UnVy_ZyLE3Jr',* [Ʊ;JSJ6K%Y uGs̸8NN} Xl%ƩPg~WlbR#fB+\*knNGs3ll<EćyJժ2AdK

高数求极限问题!lim 根号下(2+x) -2\ 根号下(3x+3) -3 x趋近于2 还有一个 lim 根号下(x^2+x+1) -根号下(x^2-x+1) x趋近于无穷
高数求极限问题!lim 根号下(2+x) -2\ 根号下(3x+3) -3 x趋近于2
还有一个 lim 根号下(x^2+x+1) -根号下(x^2-x+1)
x趋近于无穷

高数求极限问题!lim 根号下(2+x) -2\ 根号下(3x+3) -3 x趋近于2 还有一个 lim 根号下(x^2+x+1) -根号下(x^2-x+1) x趋近于无穷
lim(x->2) [√(2+x) -2]/[√(3x+3) -3]
=lim(x->2) [(2+x) -4][√(3x+3) +3]/[(3x+3) -9][√(2+x) +2]
=lim(x->2) [x-2][√(3x+3) +3]/[3x-6][√(2+x) +2]
=lim(x->2) [√(3x+3) +3]/3[√(2+x) +2]
=[3+3]/3[√4 +2]
= 1/2
lim(x->+∞) √(x^2+x+1) -√(x^2-x+1)
=lim(x->+∞) [(x^2+x+1) -(x^2-x+1)]/[√(x^2+x+1) +√(x^2-x+1)]
=lim(x->+∞) 2x/[√(x^2+x+1) +√(x^2-x+1)]
= 2*lim(x->+∞) 1/[√(1+1/x+1/x^2) +√(1-1/x+1/x^2)]
= 1
lim(x->-∞) √(x^2+x+1) -√(x^2-x+1)
=lim(x->-∞) [(x^2+x+1) -(x^2-x+1)]/[√(x^2+x+1) +√(x^2-x+1)]
=lim(x->-∞) 2x/[√(x^2+x+1) +√(x^2-x+1)]
= 2*lim(x->-∞) 1/[-√(1+1/x+1/x^2) -√(1-1/x+1/x^2)]
= -1

lim{x->2}[√(2+x)-2]/[√(3x+3)-3]
=lim{x->2}[√(2+x)-2]*[√(2+x)+2][√(3x+3)+3]/{[√(3x+3)-3][√(3x+3)+3][√(2+x)+2]}
=1/3*lim{x->2}[√(3x+3)+3]/[√(2+x)+2]
=1/3*3/2
=1/2.

分子 分母同时有理化

看图 

可以看看这,我答得其他题,用的类似方法http://zhidao.baidu.com/question/186011199.html

这上面不好写,给我邮箱我用word给你做好发过去,