设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:e^xy-xy=2和ex=∫(0,x−z)sint/tdt,求du/dx.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 13:10:42
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:e^xy-xy=2和ex=∫(0,x−z)sint/tdt,求du/dx.
xՒKPS'w!A^DI#rkEBzJ|QiBwӅ.s>{zi>Р:@|wm0_h۠۽~;0A S@91ՇԱN~X61}_A80Y>E%ł$$د5AaEB;}DP/)55'5EW!p9o߱=85D:+SLJ-ӄ%k`e D#?rVr\Ppv#.\ N&򅢜f=<3Eă wɈ ѤGTۣ#ШJoeF

设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:e^xy-xy=2和ex=∫(0,x−z)sint/tdt,求du/dx.
设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:e^xy-xy=2和ex=∫(0,x−z)sint/tdt,求du/dx.

设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:e^xy-xy=2和ex=∫(0,x−z)sint/tdt,求du/dx.
u 是自变量 x、y、z 的函数;设 f 的偏导数为 f1'、f2’;
∂u/∂x=f1'*[∂(x/y)/∂x]+f2'*[∂(y/z)/∂x]=f1'/y+f2'*0=f1'/y;
∂u/∂y=f1'*[∂(x/y)/∂y]+f2'*[∂(y/z)/∂y]=-(x/y²)f1'+(f2'/z);
∂u/∂z=f1'*[∂(x/y)/∂z]+f2'*[∂(y/z)/∂z]=f1'*0-(y/z²)f2'=-(y/z²)f2';
打字不易,

设u=f(x/y,y/z),其中f(s,t)具有连续的一阶偏导数,求du 设u=f(x,y,z)有连续的一阶导数,又函数y=(x)及z=z(x)分别由下列两式确定: 在偏导数那里卡了...求u=f(x/y,y/z)的一阶偏导数(其中f具有一阶连续偏导数),谢谢么么哒们了~ 设函数z=z(x,y)是由方程F(x-z,y-z)所确定的隐函数,其中F(u,v)具有一阶连续偏导数,求z(下标x)+z(下标y 设z = f(u,v),而u=x+y,v=xy,其中f具有一阶连续偏导数,则∂z/∂x 设Z=f(x^2-y^2,e^xy),且f具有一阶连续偏导数,求z的一阶偏导数. 1设函数z = z(x,y)由方程z=δ(x-y,y-z)所确定,其中δ(u,v)有一阶连续偏导数,求z对x的二阶偏导数? 设函数z = z(x,y)由方程z=δ(x-y,y-z)所确定,其中δ(u,v)有一阶连续偏导数,求z对x的二阶偏导数? 设z=f(xlny,x-y)且f存在连续一阶偏导求z的全部偏导数 设f(u,v)具有一阶连续可导数,z=f(xy,x/y),则∂z/∂y等于( ) 设u=f(x,y,z),φ(x^2,e^y,z)=0,y=sinx,其中f,φ有一阶连续偏导数,且&φ/&z ≠ 0,求du/dx 设u=f(x,y,z),φ(x^2,e^y,z)=0,y=sinx,其中f,φ有一阶连续偏导数,且&φ/&z ≠ 0,求du/dx ~~设u=f(x,y,z),φ(x^2,e^y,z)=0,y=sinx,其中f,φ有一阶连续偏导数,且&φ/&z ≠ 0,求du/dx 设z=h(u,v),h具有一阶连续偏导数,且u,v是由方程组[x=e^u*cosv,y=e^u*sinv]确定的x,y的函数,求 偏z/偏x 设w=f(x+y+z,xyz),其中f有连续的一阶偏导数,则对x的偏导是多少 z=f(x,2x+y,xy),f有一阶连续偏导数,求dz 设u=f(x,y,z)有连续的一阶偏导数,又函数y=y(x)及z=z(x)分别由下列两式确定:e^xy-xy=2和ex=∫(0,x−z)sint/tdt,求du/dx. 设z=f(x^2+y^2,xy),其中f具有一阶连续偏导数,求z的偏导数