求证:4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x谢谢~~~

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 18:27:16
求证:4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x谢谢~~~
x){{fh$Ǚ)T(hg # "ذA6IE$Y@:t l⣧ۗb Uō*4\ ](D,gR %HYy,L!6m !F f4D.TUHպFAҊ,N4*Ñ:^ P] qyf"Ӆ~qAb((z

求证:4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x谢谢~~~
求证:4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x
4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x
谢谢~~~

求证:4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x谢谢~~~
左=4(cos^6 x +sin^6 x)
=4(cos^2x+sin^2x)(cos^4x-cos^2xsin^2x+sin^4x)
=4[(cos^2x+sin^2x)^2-3cos^2xsin^2x]
=4[1-3cos^2xsin^2x]
右=1+3cos^22x=1+3[cos^2x-sin^2x]^2=1+3(cos^4x+sin^4x-2cos^2xsin^2x)
=1+3[(cos^2x+sin^2x)^2-4cos^2xsin^2x]
=1+3[1-4cos^2xsin^2x]
=4[1-3cos^2xsin^2x]
所以:左=右
即:4(cos^6 x +sin^6 x) = 1 + 3cos^2 2x