非齐次微分方程问题
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 02:15:12
xn0_e4Ɣvli@+d 6,A\.mҸ:
4]ljGyW{Ҵ
hve~>>:.+_FW{Q5cgSo[{mX02γI|,x[ؾ> @lǵ~q/sFuW+{?.RB9fBJDCZ`հLU+8P5b
,p,LQ!
-j䕼ub{Q;e!8M$q* \'AF;fJQd|}} 1E oËQJY2Q0N/J VXeim&Hlזu2SJjK #ϠӿLF7Isod*x&&sޫL4T
g56IJ+)ZoOMˊɡ|?=apՇ^_N[:8؎:;y#j;0;3Z
非齐次微分方程问题
非齐次微分方程问题
非齐次微分方程问题
特征方程:t^2-3t+2=0,t=1,2
所以通解y[1]=C1e^x+C2e^(2x)
设特解y[2]=Axe^(-x)+Be^(-x)
则y'[2]=Ae^(-x)-Axe^(-x)-Be^(-x)
y''[2]=-Ae^(-x)-Ae^(-x)+Axe^(-x)+Be^(-x)=-2Ae^(-x)+Axe^(-x)+Be^(-x)
所以-2Ae^(-x)+Axe^(-x)+Be^(-x)-3Ae^(-x)+3Axe^(-x)+3Be^(-x)+2Axe^(-x)+2Be^(-x)=xe^(-x)
A=1/6,B=5/36
所以通解为y=y[1]+y[2]=C1e^x+C2e^(2x)+1/6xe^(-x)+5/36e^(-x)
我正在复习这一节,等我看完了再讲给你听