已知函数f(x)=cos(2x-π/3)+sin^2x-cos^2x,设函数g(x)=[f(x)]^2+f(x),求g(x)值域

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 13:05:27
已知函数f(x)=cos(2x-π/3)+sin^2x-cos^2x,设函数g(x)=[f(x)]^2+f(x),求g(x)值域
x){}K}6uCFmr~Q}cM̼8 (t^QR Rg uml>mt|"}_`gCKW?ؚ~OG=y @ qF@  C_/P$2I ( rJ0UA]%{vc*|g/Ydp6757td=Mgs~`P>ٱ b=&=nhe!C,as['m@= 6Z lzw!*u@ӳ/.H̳!7K

已知函数f(x)=cos(2x-π/3)+sin^2x-cos^2x,设函数g(x)=[f(x)]^2+f(x),求g(x)值域
已知函数f(x)=cos(2x-π/3)+sin^2x-cos^2x,设函数g(x)=[f(x)]^2+f(x),求g(x)值域

已知函数f(x)=cos(2x-π/3)+sin^2x-cos^2x,设函数g(x)=[f(x)]^2+f(x),求g(x)值域
∵f(x)=cos(2x-π/3)+(sinx)^2-(cosx)^2
=cos(2x-π/3)-cos2x=2sin(2x-π/6)sin(π/6)=sin(2x-π/6).
∴g(x)=[sin(2x-π/6)]^2+sin(2x-π/6)=[sin(2x-π/6)+1/2]^2-1/4.
∴当sin(2x-π/6)=-1/2时,g(x)有最小值为-1/4;
 当sin(2x-π/6)=1时,g(x)有最大值为(1+1/2)^2-1/4=9/4-1/4=2.
∴g(x)的值域是[-1/4,2].