组合:Cn1+2Cn2+3Cn3……+nCnn=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:26:25
组合:Cn1+2Cn2+3Cn3……+nCnn=?
xRJ@fs"rW.<6[XZ)bmch_pf7šWμyoT}z9^MC5 ׺P6(ϟ@LQurZT_uuxNYalhm`aEF](/ja%e]d"ž5r/JHQ Yr,\rmaRȐMCaܵ󚉢v+oZL: d4yds(OgG Ђ,vݮ*c.TМ4 ѥJ˰A

组合:Cn1+2Cn2+3Cn3……+nCnn=?
组合:Cn1+2Cn2+3Cn3……+nCnn=?

组合:Cn1+2Cn2+3Cn3……+nCnn=?
kc(n,k)=k*n!/[k!(n-k)!]=n!/[(k-1)!(n-1-k+1)!] = n*(n-1)!/[(k-1)!(n-1-k+1)!] = nc(n-1,k-1).
c(n,1)+2c(n,2)+3c(n,3)+...+nc(n,n)=n[c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1)]
(1+1)^(n-1) = c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1) = 2^(n-1),
(1+1)^n = c(n,0) + c(n,1)+...+c(n,n) = 2^n =
= 2*2^(n-1)
c(n,1)+2c(n,2)+3c(n,3)+...+nc(n,n)=n[c(n-1,0)+c(n-1,1)+c(n-1,2)+...+c(n-1,n-1)]
=n*2^(n-1)
=(n/2)2^n
=(n/2)[c(n,0) + c(n,1)+...+c(n,n)]

(1+x)^n=Cn0+Cn1x+Cn2x^2+…… +Cnnx^n
求导:得:
n(1+x)^(n-1)=Cn1+2Cn2x+…… +nCnnx^(n-1)
取x=1
Cn1+2Cn2+3Cn3……+nCnn=n2^(n-1)