设a>0,b>0,b(a-1)=a/4,则在以(a,b)为圆心,a+b为半径的圆中,面积最小的圆的标准方程是

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 19:21:08
设a>0,b>0,b(a-1)=a/4,则在以(a,b)为圆心,a+b为半径的圆中,面积最小的圆的标准方程是
xPJ1 ISEadЍ-m}v!T+# vUim͌M2jsN8ĉ,_fJ3mQ0G :}#QLhY LQm)̚m|̾Rxzos߆v cW7'2^q /:VmAKhlX"P>tGRp^)=yYj6\bfNRvTs7A ]:%E pu-ڕ

设a>0,b>0,b(a-1)=a/4,则在以(a,b)为圆心,a+b为半径的圆中,面积最小的圆的标准方程是
设a>0,b>0,b(a-1)=a/4,则在以(a,b)为圆心,a+b为半径的圆中,面积最小的圆的标准方程是

设a>0,b>0,b(a-1)=a/4,则在以(a,b)为圆心,a+b为半径的圆中,面积最小的圆的标准方程是
b(a-1)=a/4,
∴b=a/[4(a-1)]>0,a>1,
圆面积最小,
<==>半径a+b最小,而a+b=a+a/[4(a-1)]=(a-1)+1/[4(a-1)]+5/4>=1+5/4=9/4,
当a=3/2时取最小值9/4,这时b=3/4,
于是,所求圆的方程为(x-3/2)^2+(y-3/4)^2=(9/4)^2.