微分方程的思路问题.y"=(y,y')型微分方程.同样右边不显含x,同样第一步令y'=p,为什么有的题y"=p'就可以了,有的题要y"=p*(dy/dx)?比如 y"-(y')^2=0和 y"+(y')^2=1,解法就不一样.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/30 23:12:15
微分方程的思路问题.y
xQMO@+K[YZŃL6聽UT1*AH%Rݶ'ӢX/o{ov4\`5 AmEi4$Abw4Ofج=}:s-dB{ u37g` :cmz&]ѪX"J*ms뒍k͋dwKd-/qWIb-k{ef ﮧOfwԽ_!$Vz#vj~E,E'Pϫ ֫5@odbeXHѿ}M>byE

微分方程的思路问题.y"=(y,y')型微分方程.同样右边不显含x,同样第一步令y'=p,为什么有的题y"=p'就可以了,有的题要y"=p*(dy/dx)?比如 y"-(y')^2=0和 y"+(y')^2=1,解法就不一样.
微分方程的思路问题.
y"=(y,y')型微分方程.同样右边不显含x,同样第一步令y'=p,为什么有的题y"=p'就可以了,有的题要y"=p*(dy/dx)?比如 y"-(y')^2=0和 y"+(y')^2=1,解法就不一样.

微分方程的思路问题.y"=(y,y')型微分方程.同样右边不显含x,同样第一步令y'=p,为什么有的题y"=p'就可以了,有的题要y"=p*(dy/dx)?比如 y"-(y')^2=0和 y"+(y')^2=1,解法就不一样.
y"-(y')^2=0和 y"+(y')^2=1,既不显含x,也不显含y,都可令y'=p代入:
p'-(p)^2=0解得:-1/p=x+C1 ,p=-1/(x+C1)
p'-(p)^2=1解得,arctanp=x+C1 ,p=tan(x+C1)
都可以求解的