已知梯形ABCD中,AD平行BC,AB=CD=6,BC=13.P是BC上的一个动点,∠APQ=∠B,射线PQ交CD或CD的延长线于点Q.(1)判断△ABP与△PCQ、△ABP与△QPA是否分别一定相似?(2)对于上述判断,如果两个三角形一定相似

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 07:51:00
已知梯形ABCD中,AD平行BC,AB=CD=6,BC=13.P是BC上的一个动点,∠APQ=∠B,射线PQ交CD或CD的延长线于点Q.(1)判断△ABP与△PCQ、△ABP与△QPA是否分别一定相似?(2)对于上述判断,如果两个三角形一定相似
xTN`CPveހf혛0ᯁ( AЉD ྐྵێ_܂0ɢ$m9yCwg!X"rJ$ʊ,2T$[';eRV v&ġT5)rjV%'+ط*sࠑ593;bPR35qzGSoa6B`uVJVv`X&_` <( 5iZJ緐i߀WgKѝlq\d(wr\wڠ;&<@+P"!=owϕ#C쉎ůSTѱbǤ1zCԓU4}4M%bwFD'C0 b0=HC χY҇g-DdžِAލ\.| c!8AOӆ00C#\\T"r_U

已知梯形ABCD中,AD平行BC,AB=CD=6,BC=13.P是BC上的一个动点,∠APQ=∠B,射线PQ交CD或CD的延长线于点Q.(1)判断△ABP与△PCQ、△ABP与△QPA是否分别一定相似?(2)对于上述判断,如果两个三角形一定相似
已知梯形ABCD中,AD平行BC,AB=CD=6,BC=13.P是BC上的一个动点,∠APQ=∠B,射线PQ交CD或CD的延长线于点Q.(1)判断△ABP与△PCQ、△ABP与△QPA是否分别一定相似?(2)对于上述判断,如果两个三角形一定相似,请加以证明;如果不一定相似,那么当BP等于多长时,他们就能相似?(3)当PQ交CD的延长线于Q时,设BP=x,DQ=y,求y关于x的函数解析式,并写出函数的定义域.

已知梯形ABCD中,AD平行BC,AB=CD=6,BC=13.P是BC上的一个动点,∠APQ=∠B,射线PQ交CD或CD的延长线于点Q.(1)判断△ABP与△PCQ、△ABP与△QPA是否分别一定相似?(2)对于上述判断,如果两个三角形一定相似
(1)在图1、图3中,△ABP与△PCQ相似,△ABP与△QPA不一定相似.
(2)证明:∠APQ=∠B……①
           ∠APC=∠BAP+∠B,∠APC=∠APQ+∠QPC
           那么有∠QPC=∠BA……②
          结合①②,证得△ABP与△PCQ相似.
     当点Q与点D重合时(如图2所示),△ABP与△QPA相似.
   此时,有AB/BP=PC/CQ=PC/CD   令BP=x,
    有方程x^2-13x+36=0
    解得x1=4,x2=9
    则当BP=4或9时,△ABP与△QPA相似.
(3)如图3,由(2)得:△ABP与△PCQ相似,有AB/BP=PC/CQ
    即y=1/6(-x^2+13x-36)  (4<x<9)