1/(1x3)+1/(2x4)+1/(3x5)+1/(4x6)+1/(5x7)+1/(6x8)的答案
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 21:42:03
x
0@ױ/Bϟ0Y$J@z*:`CʬrP Qӝޓ4,h[KŌ尲92Cyv}LOmeH _2;ۮX bX 4AY J %@ `[de7\vD&OQ2Zd 1Ӱ;_
1/(1x3)+1/(2x4)+1/(3x5)+1/(4x6)+1/(5x7)+1/(6x8)的答案
1/(1x3)+1/(2x4)+1/(3x5)+1/(4x6)+1/(5x7)+1/(6x8)的答案
1/(1x3)+1/(2x4)+1/(3x5)+1/(4x6)+1/(5x7)+1/(6x8)的答案
1/(1x3)+1/(2x4)+1/(3x5)+1/(4x6)+1/(5x7)+1/(6x8)
=[1/(1*3)+1/(2*4)+1/(3*5)+1/(4*6)+1/(5*7)+1/(6*8)]*[2*(1/2)]
=[2/(1*3)+2/(2*4)+2/(3*5)+2/(4*6)+2/(5*7)+2/(6*8)]*(1/2)
=[(1-1/3)+(1/2-1/4)+(1/3-1/5)+(1/4-1/6)+(1/5-1/7)+(1/6-1/8)]*(1/2)
=1+1/2-1/7-1/8
=153/56
用初等行变换来解下列线性方程组(1)2x1-x2+3x3=3 3x1+x2-5x3=0 4x1-x2+x3=3 x1+3x2-13x3=-6(2) x1-2x2+x3+x4=1 x1-2x2+x3-x4=-1 x1-2x2+x3-5x4=5(3) x1-x2+x3-x4=1 x1-x2-x3+x4=0 x1-x2-2x3+2x4=-1/2
1+2x4-(x2+2x3)angbangmang1
用基础解系表示线性方程组的全部解(1)【2x1-x2+x3-2x4=1 】(2) 【x1-2x2+x3=-5】 (3) 【x1-x2-x3+x4=0】【-x1+x2+2x3+x4=0 】 【x1+5x2-7x3=2】 【x1-x2+x3-3x4=1】【x1-x2-2x3+2x4=-0.5 】 【3x1+x2-5x3=-8】 【x1-x2-2x
求非其次线性方程组 x1+x2+2x3-x4=1;2X1+3X2+X3-2X4=4;3X1+4X2+3X3-3X4=5的全部解(用基础解系表示).
求解一个方程急 X(1次方)+X2+X3=5 X2+X3+X4=1 X3+X4+X5=-5 X4+X5+X1=-3 X5+X1+X2=2 求X的值,
请教这道非齐次方程组为什么这么解?x1+x2+x3+x4=1x2+2x3+2x4=35x1+4x2+3x3+3x4=2得到x1=-2+x3+x4X2=3-2x2-2x4 方程组的特解为X0=(-2.3.0.0)下一步为什么说x1=x3+x4,x2=-2x3-2x4?方程组的通解为什么是:X=X0+k1X1+k2X2
用克拉默法则解下列方程组 x1-2x2+3x3-4x4=4 x2-x3+x4=-3 x1+3x2+2x4=1 -7x2+3x3+x4=3x1-2x2+3x3-4x4=4x2-x3+x4=-3 x1+3x2+2x4=1 -7x2+3x3+x4=3
解线性方程组(1)2x1-x2+x3-2x4=7 (2)x1+2x2-3x3=-4 (3)-x1-x2+x3+4x4=4 (4)3x1+x2-x3-6x4=0答案是x1=3,x2=-2,x3=1,x4=1
因式分解:x4+x3+2x2 +x+1
5+5/1x2+5/2x3+5/2x3+5/3x4+.+5/99x100= (简便计算)
解方程组X1-2x2+3x3-x4=1,3x1-x2+5x3-3x4=2,2x1+x2+2x3-2x4=3
x1+5x2-x3-x4=-1x1-2x2+x3+3x4=33x1+8x2-x3+x4=1
写出方程组2*x1+x2-x3+x4=1,x1+2*x2+x3-x4=2,x1+x2+2*x3+x4=3的通解?
求非齐次线方程组的通解 :2x1+x2-x3+x4=1 x1+2x2+x3-x4=2 x1+x2+2x3+x4=3
具体写出方程组:2x1+x2-x3+x4=1;x1+2x2+x3-x4=2;x1+x2+2x3+x4=3的通解
解一道方程组x1+x2+x3=5,x2+x3+x4=1,x3+x4+x5=-5,x4+x5+x1=-3,x5+x1+x2=2
判断下列非齐次线性方程组是否有解,有解时,求其一般解(1)2x1+3x2-2x3=1 x1-x2+3x3=1 5x1+3x2-x3=3 (2) 3x1+x2+4x3-3x4=2 2x1-3x2+x3-5x4=1 5x1+10x2+2x3-x4=21大哥,
-(-1/1x2-1/2x3-1/3x4-1/4x5-.-1/2001x2002)