求解第14题

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 03:05:37
求解第14题
xT[OA+#;H/;4ZA7h!^P41;_p:ے M=gww/;b6򨵳ۃ߷n Z*y 0o0_.FT)BnM2 9:e_,.F061 ]lQ0m ;06]P ȉء%\h#YT q1IuB>6\fIɠ!1 㤂F1+?jT£Fu #i-S}RXQEC~8:p710% GUx_;"Sj+wFp9DŽנ6 < If9Ȇ%sH}; p"} %6YY. L+z5t8WV )R?YPvӦw{P$A/3eEQE-:||DE>WgߴX ''w?Щ^go|vG0PG*Ϧ*2םO֧_GUw_B؁ɧRZ_I|SQ}K<}/~m6jX{mh'3P?nF$뒯:jfnJUYoDy*+ŷ+IY[N\2JE:\5ďYyK{aA-&a

求解第14题
求解第14题

求解第14题
| f(x)|=x^2-2x.(x≤0)

            =ln(x+1).(x>0)

(1)当a=0时

| f(x)|恒>=-1,成立
(2)当a>0时
当x≤0时
| f(x)|=x^2-2x恒>=ax-1
x>0时
| f(x)|=ln(x+1)
总有y=ax-1与ln(x+1)相交的时刻,所以不满足| f(x)|恒>=ax-1
(3)当a<0时

x>0时
| f(x)|=ln(x+1)恒>=ax-1
当x≤0时
| f(x)|=x^2-2x
f'(x)=2x-2
为满足| f(x)|恒>=ax-1
当| f(x)|与y=ax-1相切时
∴f'(x)=2x-2
设切点x0
∴切线是y-(x0^2-2x0)=(2x0-2)(x-x0)
将(0,-1)代入得
-1-x0^2+2x0=-2x0^2+2x0
x0=-1(正值舍去)
a=2x0-2=-4
∴-4≤a<0
综上a的取值范围:-4≤a≤0

想要详细解题过程和解题思路,加公众号kkdati吧,高手帮你解题哦

|f(x)|>=ax-1===>ax<=1+|f(x)|