已知函数f(x)=cosx/2,则下列等式成立的是 A,f(2π-x)=f(x) B,f(2π+x)=f(x) C,f(-x)=-f(x) D,f(-x)=f(x)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 21:41:04
已知函数f(x)=cosx/2,则下列等式成立的是 A,f(2π-x)=f(x) B,f(2π+x)=f(x) C,f(-x)=-f(x) D,f(-x)=f(x)
x){}K}6uCFmr~qӎOvt?|m=:&<_|V˳u47U(8A03\<&HV ?!\=@Z3*u6<ٽeC n!H1o ͺpctq|0lv';dWD~qAb4Dl˦=m퀄 OA

已知函数f(x)=cosx/2,则下列等式成立的是 A,f(2π-x)=f(x) B,f(2π+x)=f(x) C,f(-x)=-f(x) D,f(-x)=f(x)
已知函数f(x)=cosx/2,则下列等式成立的是 A,f(2π-x)=f(x) B,f(2π+x)=f(x) C,f(-x)=-f(x) D,f(-x)=f(x)

已知函数f(x)=cosx/2,则下列等式成立的是 A,f(2π-x)=f(x) B,f(2π+x)=f(x) C,f(-x)=-f(x) D,f(-x)=f(x)
f(-x)=cos(-x/2)=cos(x/2)=f(x)
所以选D
而f(2π-x)=cos(2π-x)/2=cos(π-x/2)=-cos(x/2)=-f(x)
所以A不对
同样B也等于-f(x)

首先函数是偶函数,其次周期是4π,故答案是:D