证明曲线y=sinx(0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/20 17:23:38
证明曲线y=sinx(0
x){ٌg7=ߵҶ83"}\Rv6x=ۼYŅE%ŅE E% @Own~6m;+ը|>/w6Vxd9mqFFZqF F +Ovr6}1Sp6*yԱZ|fJhCmJ 8X:. @>_ Nz #M-MkJ@6F(ؠRR4^A[*7ҀXT=lx{8`l @QQ

证明曲线y=sinx(0
证明曲线y=sinx(0

证明曲线y=sinx(0
注:sqrt---square root (平方根)
y=sin(x)的弧长C1; 椭圆x^2+2*y^2 = 2的周长为C2;
则,
C1 = ∫(0:2π)dx sqrt[1+(dy/dx)^2]
= ∫(0:2π)dx sqrt[1+(cos(x))^2]
椭圆参数方程:x = sqrt(2)*cos(t); y = sin(t);
C2 = ∫(0:2π)dt sqrt[(dx/dt)^2 + (dy/dt)^2]
= ∫(0:2π)dt sqrt[2*(cos(t))^2 + (sin(t))^2]
= ∫(0:2π)dt sqrt[1+(cos(t))^2]
所以 C1 = C2