求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:48:20
求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
xP;N@*(` g vEݍ mb#,J -'KӠ*W`;H4yyyA.j9;촅&K$-quK=yQ }o|^ҁJ}%5:jH+vٖ0$h ZFhFm' %S, d<(( \߄ w@1N\ ˆ<ʬ0 F} wquC0C,nǑ5Pb" Np4q-׵Yݳ0BrbW"vbZu{E *\bFRbפRfvm.S,

求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0

求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
f²(x)=∫(0->x) f(t)sint/(2+cost) dt
2f(x) f'(x) = f(x) sinx/(2+cosx)
f'(x) = (1/2) sinx/(2+cosx)
f(x) = (1/2)∫ (0->x) [sint/(2+cost)] dt
= -(1/2) [ ln(2+cost)] (0->x)
= -(1/2) ( ln(2+cosx) - ln3)