求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 12:48:20
xP;N@*(`g
vEݍ
mb#,J
-'KӠ*W`;H4yyyA.j9 ;촅&K$-quK=yQ
}o|^ҁJ}%5:jH+vٖ0$h ZFh Fm' %S, d<((
\߄
w@1N\ <ʬ0 F} wquC0C,nǑ5Pb"Np4q-Yݳ0BrbW"vbZu{E
*\bFRbפRfvm.S,
求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
求f(x) f²(x)=∫f(t)sint/(2+cost)dt上限x下限0
f²(x)=∫(0->x) f(t)sint/(2+cost) dt
2f(x) f'(x) = f(x) sinx/(2+cosx)
f'(x) = (1/2) sinx/(2+cosx)
f(x) = (1/2)∫ (0->x) [sint/(2+cost)] dt
= -(1/2) [ ln(2+cost)] (0->x)
= -(1/2) ( ln(2+cosx) - ln3)