求定积分∫x^2/(1+x^2)^2dx,上限1,下限0.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 17:28:20
求定积分∫x^2/(1+x^2)^2dx,上限1,下限0.
x){YϗcuE6Ҍ3Jy @H$铬GΆ<^Wa[wn͹6Mr(jUYZ Fq&D &d֘RaVmrn>ܳΆ'>tO-Еp#JAV[(/.H̳ze mdPpBJ=s57J6IĂYgm߀p#)UP0 n pU'%C$4u

求定积分∫x^2/(1+x^2)^2dx,上限1,下限0.
求定积分∫x^2/(1+x^2)^2dx,上限1,下限0.

求定积分∫x^2/(1+x^2)^2dx,上限1,下限0.
设x=tanθ ,0=<θ<=π/4
x^2/(1+x^2)^2=(tanθ)^2*(cosθ)^4=(sinθ)^2(cosθ)^2
dx=dtanθ=dθ/(cosθ)^2
所以原式=∫(sinθ)^2dθ=π/8 -1/4

分部积分法也可: x/(1+x^2)^2 dx=-1/2d[1/(1+x^2)]
∫(0→1) x^2/(1+x^2)^2 dx
=-1/2×∫(0→1) x d[1/(1+x^2)]
=-1/4+1/2×∫(0→1) 1/(1+x^2) dx
=-1/4+1/2×arctan1
=-1/4+π/8