广义积分(下限-∞,上限∞)∫ 1/x^2+4x+5 dx怎么算呢?
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/26 21:49:10
x){sϗ~OǓ/gN}1OɎ. zQjC8#m{MR*5=|$S(;"-DBBH3(cI,J.I|.rlsdX6TH
Z0Z$
Yd`"_>US64>:^~O6`W١ 4;]75pcQE!t4tSӺ
@O! 5=
广义积分(下限-∞,上限∞)∫ 1/x^2+4x+5 dx怎么算呢?
广义积分(下限-∞,上限∞)∫ 1/x^2+4x+5 dx怎么算呢?
广义积分(下限-∞,上限∞)∫ 1/x^2+4x+5 dx怎么算呢?
∫ 1/x^2+4x+5 dx
=∫ 1/(x+2)^2+1 dx
=arctan(x+2)(下限-∞,上限∞)=π/2-(-π/2)=π
原式=∫(-∞,+∞) d(x+2)/[(x+2)^2+1]
=arctan(x+2) |(-∞,+∞)
=π/2-(-π/2)
=π
∫ 1/x^2+4x+5 dx=∫1/(x+2)²+1 dx=arctan(x+2)
所以,原式=∫<-∞,-2>1/x^2+4x+5 dx+ ∫<-2,+∞>1/x^2+4x+5 dx
=arctan(x+2)|<-∞,-2>+arctan(x+2)|<-2,+∞>
=0- (- π/2) + π/2- 0=π.