1.已知数列{an},{bn}满足a1=2,a2=4,bn=a(n+1)-an,b(n+1)=2bn+2.(1)求证:数列{bn+2}是公比为2的等比数列;(2)求an.注:a(n+1)中(n+1)为a的角标,后同.2.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12(

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/15 10:18:20
1.已知数列{an},{bn}满足a1=2,a2=4,bn=a(n+1)-an,b(n+1)=2bn+2.(1)求证:数列{bn+2}是公比为2的等比数列;(2)求an.注:a(n+1)中(n+1)为a的角标,后同.2.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12(
xTn@~AP!zEd*j.ZDi@Q*"rhR%M6&}kЙ] Rg曙o+F^~^o> [yCx#?| 4̒V=]Όm 5 6Yńk'#jhBC!f) y>Iw6?³=MtE :tA^#-U'Etnڗl<>B2$Y foz>z R;84S(tcF}r s1]0>#ﲰ])yՖ$3SMР8" _%= u4^sDGج́ETo{`E/,]UR˷+$ڀ:XUQM~Qnۋ]Vz0m a':<߻rM`[d}:䪆K}H£J0-Ȼee? P7ApamZdOp-}G/(%ė$~3^b %{(0NEha@@*X&[z X5*Z H C,{Ub~m =~

1.已知数列{an},{bn}满足a1=2,a2=4,bn=a(n+1)-an,b(n+1)=2bn+2.(1)求证:数列{bn+2}是公比为2的等比数列;(2)求an.注:a(n+1)中(n+1)为a的角标,后同.2.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12(
1.已知数列{an},{bn}满足a1=2,a2=4,bn=a(n+1)-an,b(n+1)=2bn+2.
(1)求证:数列{bn+2}是公比为2的等比数列;
(2)求an.
注:a(n+1)中(n+1)为a的角标,后同.
2.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12
(1)求数列{an}的通项公式:
(2)令bn=anx^n(x∈R)求数列{bn}前n项和的公式
注:anx^n为an与x的n次幂的乘积,n为a的角标,后同.

1.已知数列{an},{bn}满足a1=2,a2=4,bn=a(n+1)-an,b(n+1)=2bn+2.(1)求证:数列{bn+2}是公比为2的等比数列;(2)求an.注:a(n+1)中(n+1)为a的角标,后同.2.已知数列{an}是等差数列,且a1=2,a1+a2+a3=12(
1.(1)∵b(n+1)=2bn+2
∴b(n+1)+2=2bn+4
∴[b(n+1)+2]/(bn+2)=(2bn+4)/bn+2=2
∴数列{bn+2}是公比为2的等比数列
(2)由第一题可知bn+2=2*2^(n-1)
=2^n
∴bn=2^n-2
所以2^n-2=a(n+1)-an
a1=2
a2-a1=2
a3-a2=2^2
a4-a3=2^3
…………
an-a(n-1)=2^(n-1)
以上式子相加
得:an=2+2+2^2+2^3+……+2^(n-1)
=2+{2*[1-2^(n-1)]/(1-2)}
=2^n
2.(1)∵a1=2,a1+a2+a3=12
∴a1+a1+d+a1+2d=12
∴d=2
∴an=2+2(n-1)
2n
(2)sn=2*x+4*x^2+6*x^3+8*x^4+……2n*x^n
x*sn= 2*x^2+4*x^3+6*x^4+……(2n-2)*x^n+2n*x^(n+1)
两式相减
得(1-x)*sn=2x+2x^2+2x^3+2x^4+……2x^n-2n*x^(n+1)
={[2x(1-x^n)]/1-x}-2n*x^(n+1)
所以sn=……
你会算的吧

已知数列an满足an=31-6n,数列bn满足bn=(a1+a2+...+an)/n,求数列bn的前20项之和. 已知数列{an},{bn}满足a1=2,2an=1+2an*an+1,设{bn}=an-1求数列{1n}为等差数列急!!! 已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2.求{bn}通项公式 已知数列{an}、{bn}满足:a1=1/4,an+bn=1,bn+1=bn/1-an^2 (1)求{an}的通项公式 已知数列{an}中,a1=3/5,an=2-1/an-1(n》2),数列{bn)满足bn=1/an-1.求证数列{bn}是等差数列. 已知数列an满足a1=4,an=4 - 4/an-1 (n>1),记bn= 1 / an-2 .(1)求证:数列bn是等差数列 已知数列{an}和{bn}满足关系:bn=(a1+a2+a3+…+an)/n,(n∈N*).若{bn}是等差数列,求证{an}为等差数列 已知数列{an}满足a1=4且a(n+1),an,3成等差数列,其中.已知数列{an}满足a1=4且a(n+1),an,3成等差数列,其中n属于正自然数.1.求证:数列{an-3}是等比数列2.令bn=2n×an-6n,求数列{bn}的通项公式以及前n项 已知递增的等差数列{an},满足a1=1,且a1,a2,a5成等比数列1.求等差数列{an},的通项an2.设bn=an+2^an,求数列{bn}的前n项Sn 已知数列{an}中,a1=3/5,数列an=2-1/an-1(n≥2,n∈N*),数列{bn}满足bn=1/an-1求证明数列{bn}是等差数列 【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项 (高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an(1)若a1,a3,a4成等比数列,求数列{an}的通项公式(2 已知数列{an}中,满足a1=1,an=2an减1.加.2的n减1次方,设bn=2的n减1次方分之an 证明数列{bn}是等差数列 急 已知数列{an},{bn}满足a1=2,2an=1+ana(n+1),bn=an-1,设数列{bn}的前n项和为Sn,Tn=S2n-Sn.求数列{bn}的通项公式. 19、已知数列{an},{bn}满足a1=2,2a n=1+a na n+1,bn=an-1(bn不等于0)求证:数列{1/bn}是等差数列,并求数列{an}的通项公式. 已知数列{an}满足an+Sn=n,数列{bn}满足b1=a1,且bn=an-a(n-1),(n≥2),试求数列{bn}的前n项的和Tn 已知数列an满足a1=2 其前n项和为Sn Sn =n+7~3an 数列bn满足 bn=an~1 证明数列bn是等差数列 已知数列an满足an=31-6n,数列bn满足bn=(a1+a2+...+an)/n,求数列/bn/的前20项之和A.187 B.164 C.257 D.304