∫ √(2-x^2)^3dx 怎么积分求解.

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 05:19:45
∫ √(2-x^2)^3dx 怎么积分求解.
xJ@_% .kv!l.>Fi6/54{$^| =xϐ(z+tv6iSzdoٙ0_\z{vVo?>Nx32“?oZ!,.3") Bg)x< \1TYI MUd1J F :(wMQ5=2N}hRX6F $จk Q"vQ(0#p[c 8L_ Z|nKQdӴ2.G6:n'7%.>ZֽX)t8H7g

∫ √(2-x^2)^3dx 怎么积分求解.
∫ √(2-x^2)^3dx 怎么积分求解.

∫ √(2-x^2)^3dx 怎么积分求解.
令x=√2sinβ,dx=√2cosβdβ
(2-x²)^(3/2)=(2cos²β)^(3/2)=2√2cos³β
cosβ=[(2-x²)^(3/2)/(2√2)]^(1/3)=√(2-x²)/√2
∴∫(2-x²)^(3/2) dx
=4∫cos⁴β dβ
=4∫(cos²β)² dβ
=∫(1+cos2β)² dβ
=∫dβ+2∫cos2βdβ+∫cos²2βdβ
=β+sin2β+(1/2)∫(1+cos4β)dβ
=β+sin2β+(1/2)β+(1/8)sin4β+C
=(3/2)β+2sinβcosβ+(1/4)sin2βcos2β+C
=(3/2)arcsin(x/√2)+2(x/√2)[√(2-x²)/√2]+(1/2)(x√2)[√(2-x²)/√2][(2-x²)/2-x²/2]+C
=(3/2)arcsin(x/√2)-(x/4)(x²-5)√(2-x²)+C