已知a大于0b大于0且a+b+3=ab则a+b的最小值是应该是关于不等式问题的.高二数学,谢了.

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/14 15:07:41
已知a大于0b大于0且a+b+3=ab则a+b的最小值是应该是关于不等式问题的.高二数学,谢了.
xSN@V84lSL0Db2Ơi(I|PHXяV3хlܴq>F-i.,D S"sM%XrI_\7Zy(IĦP!Y%}iDR:Nqrzr|:Nj>ָ'c'KgdPë؂=k9PpqȎo鯡aWYե>` *%\:;HEOlW[~34od{H RQH f*D3n

已知a大于0b大于0且a+b+3=ab则a+b的最小值是应该是关于不等式问题的.高二数学,谢了.
已知a大于0b大于0且a+b+3=ab则a+b的最小值是
应该是关于不等式问题的.高二数学,谢了.

已知a大于0b大于0且a+b+3=ab则a+b的最小值是应该是关于不等式问题的.高二数学,谢了.
a>0,b>0
所以a+b>=2√ab
√ab<=(a+b)/2
0ab=a+b+3
所以a+b+3<=(a+b)²/4
令x=a+b
x+3<=x²/4
x²-4x-12>=0
(x-6)(x+2)>=0
x<=-2,x>=6
a>0,b>0则x>0
所以x>=6
所以a+b最小=6

a+b=ab-3<=(a+b/2)^2-3
令a+b=x
即x<=x^2/4-3
解得x>=6 或 x<=-2
因为a+b=x>0
所以当a=b=3时x有最小值6

a+b+3=ab
由基本不等式得ab小于等于【(a+b)除以2】的平方
所以a+b+3小于等于【(a+b)除以2】的平方
然后接可以求了
答案为6

因为(a+b)²≥4ab
所以4(a+b)+12≤(a+b)²
解关于a+b的不等式(a+b-6)(a+b+2)≤0
a+b≥6 或a+b≤-2