(复杂)有理数指数幂计算有理数指数幂计算:(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2):(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 07:32:49
(复杂)有理数指数幂计算有理数指数幂计算:(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2):(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2)
xՓN@_e+6İ^Dm>!(r)E 5QQCÂVjx9mYzHqa4g9ӿb1p4/eǨV'=e4 T٠f9i-uI7EB,;A! lʅV'ZTm2cxMcdȒp Hov~0w~"lٕL35*yӴ݂ڜ{ oP ʞuȫLV18URŞ4p8S0PMы~#"bZbؼH$`62JtPZPbVOt`MŲtSAlcitߡ

(复杂)有理数指数幂计算有理数指数幂计算:(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2):(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2)
(复杂)有理数指数幂计算
有理数指数幂计算:(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2):(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2)

(复杂)有理数指数幂计算有理数指数幂计算:(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2):(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2)
(1+2^1/32)(1+2^1/16)(1+2^1/8)(1+2^1/4)(1+2^1/2)
上下同乘以(1-2^1/32),反复用平方差
=(1-2^1/32)(1+2^1/32)(1+2^1/16)(1+2^1/8)(1+2^1/4)(1+2^1/2)/(1-2^1/32)
=[1^2-(2^1/32)^2](1+2^1/32)(1+2^1/16)(1+2^1/8)(1+2^1/4)(1+2^1/2)/(1-2^1/32)
=(1-2^1/16)(1+2^1/16)(1+2^1/8)(1+2^1/4)(1+2^1/2)/(1-2^1/32)
=(1-2^1/8)(1+2^1/8)(1+2^1/4)(1+2^1/2)/(1-2^1/32)
=(1-2^1/4)(1+2^1/4)(1+2^1/2)/(1-2^1/32)
=(1-2^1/2)(1+2^1/2)/(1-2^1/32)
=(1-2)/(1-2^1/32)
=-1/(1-2^1/32)
=1/(2^1/32-1)

你写了2遍吧?这个有点技巧的,和指数幂的运算关系不大!
就是利用:(a+b)(a-b)=a^2-b^2
需要一个催化剂,我们看:
(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2)
=(1-2^1/32)*(1+2^1\32)(1+2^1\16)(1+2^1\8)(1+2^1\4)(1+2^1\2) /(1-2^1/32)
=(1-2)/2^(1/32)
=-1/2^(1/32)