有三块草地,面积分别为5、6、8公顷,草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块的可供19头牛吃多少天?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/28 12:21:14
有三块草地,面积分别为5、6、8公顷,草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块的可供19头牛吃多少天?
xVnL}#6-WkThMn48@$~~%|i $,(U^g<5Tɶ-3>{ %oEuh~vXz:GOW5tZoOzlz{o:&;e\2>}7x6Q*u,Sg5&K{fqٟ88%OYG{|垽 43KY)-LϣJ$ԝAv1&[y{[Rno698c[-?lg0Ӵi4 1ЄI2/'n爭ho_ʴUuXu)fLa^Vevh[JMC4iQb;MZPdɐu)rBď4n(Fi7%ϮǪ(y;8ꂢYY$0\q39mCf3krf-E?Q Gʜ4b`U-hQr:2/W>_ E&,0}H=_dװO.ɱi~;>m*U7gձw*G̮n ”]̰8F[H[26j,_> I1پICfUr6AýTW]ŅAoYjʴDp"E ddZ鮢O }#Ǔ .8_h5딸ZIxEUzպ8BW<<$oC*- DA_A45H?iy3pcty o2gք'<7c^ C`yr{"dI5tz^䵕0\yfW_zIo.]EAj]D7fp

有三块草地,面积分别为5、6、8公顷,草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块的可供19头牛吃多少天?
有三块草地,面积分别为5、6、8公顷,草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块的可供19头牛吃多少天?

有三块草地,面积分别为5、6、8公顷,草地上的草一样厚,而且长得一样快。第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天。问第三块的可供19头牛吃多少天?
有三块草地,面积分别为5,6,8公顷.草地上的草一样厚,而且长得一样快.第一块草地可供11头牛吃10天,第二块草地可供12头牛吃14天.问:第三块草地可供19头牛吃多少天?
由题意5公顷草可供11头牛吃10天,我们可以推出30公顷草可以供66头牛吃10天.同样第二块6公顷可供12头牛吃14天,即可以认为30公顷可供60头吃14天.
我们假设1头牛1周吃一个单位的草,所以在(14-10)天内草场上的增长量是60*14-66*10=180个单位,所以1天草场的增长量为180/4=45个单位.由此我们可以计算出30公顷的草场上原来有66*10-10*45=210个单位的草.
从而有8公顷的草场上原来有210*(8/30)=56个单位的草,8公顷的草场1天草地增量为45*(8/30)=12个单位.
综上所述,在8公顷的草场上可供19头牛吃:56/(19-12)=8天

题呢?

题呢?

什么题

题目呢?

没题目,想帮忙也没办法啊

题呢???

你爸没有生殖器。

[分析]
因为三块草地面积不相等,可以转化成相同的5、6、8的最小公倍数120公顷。
由题意5公顷草可供11头牛吃10天,我们可以推出120公顷草可以供11×24=264头牛吃10天。同样第二块6公顷可供12头牛吃14天,即可以认为120公顷可供12×20=240头吃14天,问第三块的可供19头牛吃多少天就是问120公顷的草地可供19×15=285头牛吃多少天?
解,设每天...

全部展开

[分析]
因为三块草地面积不相等,可以转化成相同的5、6、8的最小公倍数120公顷。
由题意5公顷草可供11头牛吃10天,我们可以推出120公顷草可以供11×24=264头牛吃10天。同样第二块6公顷可供12头牛吃14天,即可以认为120公顷可供12×20=240头吃14天,问第三块的可供19头牛吃多少天就是问120公顷的草地可供19×15=285头牛吃多少天?
解,设每天新生长的草可以供X头牛吃。那么120公顷的草地原来的草可以用式子(264-x)×10或(240-x)×14表示。
(264-x)×10=(240-x)×14.......(同是原来的草,所以相等)
解得X=180
[(264-180)×10]÷(285-180)=840÷105=8(天)
或[(240-180)×14]÷(285-180)=840÷105=8(天)

收起

这好像是牛吃草问题啊。。。