1.求函数y=sin(2x-π/3)的对称中心2.求函数y=sin(π/3-2x)的单调递增区间、对称轴
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/23 21:50:13
1.求函数y=sin(2x-π/3)的对称中心2.求函数y=sin(π/3-2x)的单调递增区间、对称轴
1.求函数y=sin(2x-π/3)的对称中心
2.求函数y=sin(π/3-2x)的单调递增区间、对称轴
1.求函数y=sin(2x-π/3)的对称中心2.求函数y=sin(π/3-2x)的单调递增区间、对称轴
y=sin(2x-π/3) = 2sin(x-π/6) x-π/6=Kπ+π/2 x=Kπ+2/3π 对称轴
y=sin(π/3-2x) = 2sin(π/6-x) π/6-x=Kπ+π/2 x=-Kπ-1/3π 对称轴
单调递增区间:2Kπ-π/2《π/3-2x《2Kπ+π/2 -2Kπ+π/2》2x-π/3》-2Kπ-π/2
2Kπ+5π/6》2x》-2Kπ-π/6
-Kπ-π/12《x《Kπ+5π/12
1、2x-π/3=kπ x=kπ/2+π/6
2、增区间 kπ-π/2<π/3-2x
1、函数y=sin(2x-π/3)的对称中心 就是y=sin(2x-π/3)=0 的解 即:2x-π/3=kπ 所以 x=kπ/2+π/6
2、增区间满足 kπ-π/2<=π/3-2x<=kπ+π/2 即:X∈【kπ/2- π/12 kπ/2+5π/12】
对称轴 就是y=sin(2x-π/3)=1或-1 的解 即:π/3-2x=kπ+π/2 x=kπ/2-π/12