求f(x)=((x+1)的2次方+sinx)/(x的2次方+1)的最大值与最小值之和

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 20:17:09
求f(x)=((x+1)的2次方+sinx)/(x的2次方+1)的最大值与最小值之和
x){)MBVCBPgk>S83BS_I,lN%˟6yb~:&HO>)Ov]gmmT62h$ VOTLEӋuNFՁ8c&XCm*tӥ^uWvh&@x $ ԅɮk~{͓]Rgx .ښkklj9ڹF6yv 

求f(x)=((x+1)的2次方+sinx)/(x的2次方+1)的最大值与最小值之和
求f(x)=((x+1)的2次方+sinx)/(x的2次方+1)的最大值与最小值之和

求f(x)=((x+1)的2次方+sinx)/(x的2次方+1)的最大值与最小值之和
函数应为f(x)=[x^2+1+2x+sinx]/(x^2+1)
f(x)=[x^2+1+2x+sinx]/(x^2+1)=1+(2x+sinx)/(x^2+1)
记g(x)=(2x+sinx)/(x^2+1),
则f(x)=1+g(x)
g(x)为奇函数,若其最大值为g(x0)=a,
则最小值为g(-x0)=-a,
它们互为相反数因此M=1+a,m=1-a故有M+m=2