sin(兀/4-x)=5/13、x在(0、兀/2)内 则cos2x/cos(兀/4+x)=?

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/24 00:32:30
sin(兀/4-x)=5/13、x在(0、兀/2)内 则cos2x/cos(兀/4+x)=?
x)+{ik=&Ə+Y02!Ft>mkUx139ب(z"6IE7TΆvnUS64N2m r:^ 8ߠh%Xi{m5*tFUhAXR``m` G􍴐b!@HZ (Q *ch yv>

sin(兀/4-x)=5/13、x在(0、兀/2)内 则cos2x/cos(兀/4+x)=?
sin(兀/4-x)=5/13、x在(0、兀/2)内 则cos2x/cos(兀/4+x)=?

sin(兀/4-x)=5/13、x在(0、兀/2)内 则cos2x/cos(兀/4+x)=?
sin²a+cos²a=1
所以cos(π/4-x)=12/13
原式=(cos²x-sin²x)/(cosπ/4cosx-sinπ/4sinx)
=(cosx+sinx)(cosx-sinx)/[√2/2*(cosx-sinx)]
=√2(cosx+sinx)
=√2*√2sin(x+π/4)
=2cos(π/4-x)
=24/13