设sin(θ/2)-cos(θ/2)=3/√5.且180°
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:38:55
xQ1N0JXI)Bv.TXBE2VP( T ҕV]PiBC8
q"{ˏvl{0+G0hԒonߧtU;:A@6@9lY|0 eb
xo>a)D/|/BM'mj6G᷈-[H
( o2]L+1
K)H-Dho[F4s 톨MCʭ-͂^@e7gbvEYgw^ӴuF8Co;
)|֔
设sin(θ/2)-cos(θ/2)=3/√5.且180°
设sin(θ/2)-cos(θ/2)=3/√5.且180°
设sin(θ/2)-cos(θ/2)=3/√5.且180°
sin(θ/2)-cos(θ/2)=3/√5
2sin(θ/4)cos(θ/4)-[cos^2(θ/4)-sin^2(θ/4)]=(cos^2(θ/4)+sin^2(θ/4))3/√5
两边同除以cos^2(θ/4),为好写,记tanθ/4 =x
则2x-1+x^2=3/√5+(3/√5)x^2,(3-√5)x^2-2√5 x+3+√5=0
x1=(√5+1)/(3-√5)=√5+2,
x2=(√5-1)/(3-√5)=(√5+1)/2
180°<θ<270°,45°<θ/4<67.5°,1
解:由倍角公式得 sin(θ/2)=2sin(θ/4)cos(θ/4)
cos(θ/2)=cos^2(θ/4)-sin^2(θ/4)
设sinθ+cosθ=√2/3,π/2sinθ^3是sinθ的3次
设函数∫(θ)=sinθ cosθ+5/2/sinθ+cosθ 函数∫的最小值?
设θ是第二象限角,sinθ=1/3,那么cos(θ/2)=?
设向量a=(3/2,sin θ),b=(cosθ,1/3),其中0
设向量a=(3/2,sin θ),b=(cosθ,1/3),其中0
设sinθ+cosθ=√2/3,π/2
设sinθ+cosθ=√2/3,π/2
设sin(θ/2)-cos(θ/2)=3/√5.且180°
设sinα-sinβ=1/3,cosα+cosβ=1/2,则cos(α+β)=?
设cosθ+cos^2θ=1,则sin^2θ+sin^6θ+sin^8θ的值为
cot(π+θ)=2,则(3sinθ-cosθ)/(sinθ+cosθ)=?
sinθ-cosθ=1/2,则sin^3θ-cos^3θ=?.
已知2sinθ+3cosθ=2,求sinθ+cosθ的值
已知sinθ-cosθ=1/2,求sin^3θ-cos^3θ
参数方程化为普通方程 x=(sinθ+cosθ)/(2sinθ+3cosθ) y=sinθ/(2sinθ+3cosθ)
设sinθ+cosθ=-√2,则cos2θ=_______sin4θ=_______
设sinθ+cosθ=1/2 求sin2θ
设f(θ)=(2cos^3θ+sin^2(2π-θ)+sin(π/2+θ)-3)/(2-2cos^2(π+θ)+cos(-θ)) 求f(π/3)的值