设sin(θ/2)-cos(θ/2)=3/√5.且180°

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 01:38:55
设sin(θ/2)-cos(θ/2)=3/√5.且180°
xQ1N0JXI)Bv.TXBE2VP( T ҕV]PiBC8 q"{ˏvl{0+G0hԒonߧtU;:A@6@9lY|0eb xo>a)D/|/BM'mj6G᷈-[ˆH ( o2]L+1 K)H-Dho[F4s톨MCʭ-͂^@e7gbvEYgw^ӴuF8Co; )|֔

设sin(θ/2)-cos(θ/2)=3/√5.且180°
设sin(θ/2)-cos(θ/2)=3/√5.且180°

设sin(θ/2)-cos(θ/2)=3/√5.且180°
sin(θ/2)-cos(θ/2)=3/√5
2sin(θ/4)cos(θ/4)-[cos^2(θ/4)-sin^2(θ/4)]=(cos^2(θ/4)+sin^2(θ/4))3/√5
两边同除以cos^2(θ/4),为好写,记tanθ/4 =x
则2x-1+x^2=3/√5+(3/√5)x^2,(3-√5)x^2-2√5 x+3+√5=0
x1=(√5+1)/(3-√5)=√5+2,
x2=(√5-1)/(3-√5)=(√5+1)/2
180°<θ<270°,45°<θ/4<67.5°,1x1舍去,x2是所求的解

解:由倍角公式得 sin(θ/2)=2sin(θ/4)cos(θ/4)
cos(θ/2)=cos^2(θ/4)-sin^2(θ/4)