已知数列{θn} {an}满足θ1=45°,且sinθn=an+1,tanθn=an,求数列an的通项公式

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 05:37:59
已知数列{θn} {an}满足θ1=45°,且sinθn=an+1,tanθn=an,求数列an的通项公式
x){}KMczy Չyv/|m&6<183(kmSe<њ|VˆY/|ں~"}_`gCc')*@TCM[`![Cu0Hӌ3KDC H)1GUՇИt r P'U#DjX|m I*+7WE !~~qAb("

已知数列{θn} {an}满足θ1=45°,且sinθn=an+1,tanθn=an,求数列an的通项公式
已知数列{θn} {an}满足θ1=45°,且sinθn=an+1,tanθn=an,求数列an的通项公式

已知数列{θn} {an}满足θ1=45°,且sinθn=an+1,tanθn=an,求数列an的通项公式
an = tanθn
a1=1
a(n+1) =sinθn
= ±an/√(1+(an)^2)
[a(n+1)]^2 = (an)^2/(1+(an)^2)
1/[a(n+1)]^2 = (1+(an)^2)/(an)^2
1/[a(n+1)]^2 - 1/(an)^2 =1
{ 1/(an)^2 } 是等差数列,d=1
1/(an)^2 - 1/(a1)^2 = n-1
1/(an)^2 = n
an = √(1/n)