已知(1-tana)/(2+tana)=1求证tan2a=-4tan(a+派/4)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/18 05:31:45
已知(1-tana)/(2+tana)=1求证tan2a=-4tan(a+派/4)
xTMN@J-Ltْ$QQ7"Fc\";8a|f:, w}{xZ4}4ᧇɬ'$O %\8CXen{>)Q,HZ5oQ\qH̗6%F#N'&5#\2EEԖJXRmJ\h*؂mT7EKOx,;Hp; %}eA/B)RR]k?G(͕XVK~Ew"uQ0"!VI A*C 3azl BN&u]Riu_'h2xkp;h)_^y"W|;Q39۩֛CtlJ,:Fg?Z

已知(1-tana)/(2+tana)=1求证tan2a=-4tan(a+派/4)
已知(1-tana)/(2+tana)=1
求证tan2a=-4tan(a+派/4)

已知(1-tana)/(2+tana)=1求证tan2a=-4tan(a+派/4)
1-tanA/2+tanA=1
1-tanA=2+tanA
tanA=-1/2;
tan2A
=2tanA/(1-tan^2 A)
=2*(-1/2)/[1-(-1/2)^2]
=-1/[1-1/4]
=-1/(3/4)
=-4/3
-4tan(A+π/4)
=-4*[(tanA+tanπ/4)/(1-tanAtanπ/4)]
=-4*[(tanA+1)/(1-tanA)]
=-4*[(-1/2+1)/(1+1/2)]
=-4*[(1/2)/(3/2)]
=-4*1/3
=-4/3
所以tan2A=-4tan(A+π/4)

证明:
(1-tana)/(2+tana)=1
1-tana=2+tana
tana=-1/2
tan2a=2tana/(1-tanatana)
=(-1/2×2)/[1-(-1/2)×(-1/2)]
=-4/3
-4tan(a+π/4)=-4(tana+tanπ/4)/(1-tanatanπ/4)
...

全部展开

证明:
(1-tana)/(2+tana)=1
1-tana=2+tana
tana=-1/2
tan2a=2tana/(1-tanatana)
=(-1/2×2)/[1-(-1/2)×(-1/2)]
=-4/3
-4tan(a+π/4)=-4(tana+tanπ/4)/(1-tanatanπ/4)
=-4(-1/2+1)/[1-(-1/2)×1]
=-4/3
所以tan2a=-4tan(a+π/4)

收起

(1-tana)/(2+tana)=1
解得:tana=-1/2
tan2a=2tana/(1-tan平方a) =-4/3
-4tan(a+派/4)
=(-4tana-4)/(1-tana)
=-4/3
故:tan2a=-4tan(a+派/4)