已知直线3x+√3 y-6=0分别交x,y轴于A,B两点,P是线段AB上一点,点P在x轴上的射影为Q,当三角形POQ面积最大时,求点P的坐标 答案是(1,√3 )

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/01 13:18:42
已知直线3x+√3 y-6=0分别交x,y轴于A,B两点,P是线段AB上一点,点P在x轴上的射影为Q,当三角形POQ面积最大时,求点P的坐标 答案是(1,√3 )
xՓN@_Gd8y#9/D="@Qa} PU (EFABRָ K)Й$DKR[+߳ϧ٧NAx8oˋ$$;i#4RP//H[i@8:Xoeۆ_qR!>֮蟔_VO֥_ih9S `WV5%jF5$1<S臷

已知直线3x+√3 y-6=0分别交x,y轴于A,B两点,P是线段AB上一点,点P在x轴上的射影为Q,当三角形POQ面积最大时,求点P的坐标 答案是(1,√3 )
已知直线3x+√3 y-6=0分别交x,y轴于A,B两点,P是线段AB上一点,点P在x轴上的射影为Q,
当三角形POQ面积最大时,求点P的坐标 答案是(1,√3 )

已知直线3x+√3 y-6=0分别交x,y轴于A,B两点,P是线段AB上一点,点P在x轴上的射影为Q,当三角形POQ面积最大时,求点P的坐标 答案是(1,√3 )
∵直线3x+√3 y-6=0分别交x,y轴于A,B两点,令y=0和令x=0分别求出A、B的坐标A(2,0)、B(0,2√3),∴直线AB的方程为y=-√3(x-2).设P(t,-√3(t-2)),则Q(t,0).∴△POQ面积=[x(-√3t+2√3)]/2=[-√3(x-1)^2+√3]/2.∵0≤x≤2,∴当x=1时,面积最大,此时,y=√3,∴点P的坐标是(1,√3 ).

直线3x+√3 y-6=0中,令x=0,得y=2√3. 令y=0,得x=2
∴A(2,0),B(0,2√3)
,P是线段AB上,设P(a,b), 则b=2√3-√3a, (0≤a≤2)
S△POQ=1/2*a(2√3-√3a)
=--√3a^2/2+√3a
当a=1时s最大
此时p(1,√3 )