(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 08:11:52
x)072672Zf@\B[OOȲ240*35A%@6IE_`gC7<]iGӵl`44 m
1GI˳HB~І65xSWHM2zsƓKA& 5j##-ڐp0C$tM1 pca8%%1xGTo=6yv 7
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
大分子=1/1-1/2+1/3-1/4+1/5-1/6+.+1/99-1/100
大分母=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/1+1/2+1/3+.+1/50)
=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/2乘以2+1/4乘以2+1/6乘以2+.+1/100乘以2)=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--2*(1/2+1/4+1/6+...+1/100)=1/1+1/2+1/3+.+1/50+1/51+1/52+.+1/100-(1/2+1/4+1/6+...+1/100)-(1/2+1/4+1/6+...+1/100)=1/1+1/3+1/5+...+1/99--(1/2+1/4+1/6+...+1/100)=1/1-1/2+1/3-1/4+...+1/99-1/100
所以大分母=大分子 所以原式=1
巧算:(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=====
简算:1/1*2+1/2*3+1/3*4+1/4*5+1/5*6
((1/2)-1)*((1/3)-1)*((1/4)-1)*((1/5)-1)*((1/6)-1)*((1/7)-1)*((1/8)-1)*((1/9)-1)*((1/10)-1)
1+1+1+1+11+-1-1-1-1-2-3-4-5-6等于
1-1/2+1/3-1/4+1/5-1/6+1/7.-1/50=?
1+1+1+1+1+1+1+1+1+2+5+4+8+3+6+2+1+4等于多少?
1-1/2+1/3-1/4+1/5-1/6+…+1/15=23*[1/( )+1/( )+1/( )+1/( )]
(1+1/2)*(1+1/4)*(1+1/6)*.*(1+1/20)*(1-1/3)*(1-1/5)+(1-1/7)*.*(1-1/2
1*1/2+1/2*1/3+1/3*1/4+1/4*1/5+1/5*1/6+1/6*1/7用简便方法怎么做?
1.(1+1/2+1/3+1/4)*(1/2+1/3+1/4+1/5)-(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4)=2.(1+1/2+1/3+1/4+1/5)*(1/2+1/3+1/4+1/5+1/6)-(1+1/2+1/3+1/4+1/5+1/6)*(1/2+1/3+1/4+1/5)=
9*(1-1/2)*(1-1/3)*(1-1/4)*(1-1/5)*(1-1/6)*(1-1/7)*(1-1/8)*(1-1/9)怎样简便计算
(1+2/1)*(1+4/1)*(1+6/1)*...*(1+20/1)*(1-3/1)*(1-5/1)*(1-7/1)*...*(1-21/1)等于多少
1/1*3+1/2*4+1/3*5+1/4*6+.+1/100*102=?
1+1/2+1/3+1/4+1/5+1/6+.+1/n极限多少?
1+1+1+2+1+3+1+4+1+5+1+6
1/2+1/3+1/4+1/5+1/6+1/7+.1/20=
如何证明1+1/2+1/3+1/4+1/5+1/6+...+1/2014
1/2 + 1/6 + 1/12 + 1/20 + 1/30+ 1/42 + 1/56 + 1/72=(1+ 1/2+ 1/3+ 1/4+ 1/5)×(1/2+ 1/3+ 1/4+ 1/5+ 1/6)-(1+ 1/2+ 1/3+ 1/4+1/5+ 1/6)×(1/2+ 1/3+ 1/4+ 1/5)