(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/29 08:11:52
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
x)072672Zf@\B[OOȲ240*35A%@6IE_`gC7<]iGӵl`44 m 1GI˳HB~І65xSW HM2zsƓKA& 5j##-ڐp0C$tM1pca8%%1 xGTo=6yv7

(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)

(1/1*2+1/3*4+1/5*6+1/7*8+...+1/99*100)/(1/51+1/52+...+1/100)
大分子=1/1-1/2+1/3-1/4+1/5-1/6+.+1/99-1/100
大分母=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/1+1/2+1/3+.+1/50)
=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--(1/2乘以2+1/4乘以2+1/6乘以2+.+1/100乘以2)=1/51+1/52+.+1/100+(1/1+1/2+1/3+.+1/50)--2*(1/2+1/4+1/6+...+1/100)=1/1+1/2+1/3+.+1/50+1/51+1/52+.+1/100-(1/2+1/4+1/6+...+1/100)-(1/2+1/4+1/6+...+1/100)=1/1+1/3+1/5+...+1/99--(1/2+1/4+1/6+...+1/100)=1/1-1/2+1/3-1/4+...+1/99-1/100
所以大分母=大分子 所以原式=1