一道疑惑的函数的题,是否存在这样的实数k.使得二次方程x2+(2k-1)x-(3k+2)=0有两个实数跟,切两根都在2与四之间,若存在请确定k范围,若不存在请说明理由

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/25 02:37:10
一道疑惑的函数的题,是否存在这样的实数k.使得二次方程x2+(2k-1)x-(3k+2)=0有两个实数跟,切两根都在2与四之间,若存在请确定k范围,若不存在请说明理由
xVMS"W+YtbʱT% 7] niArF>foL}ݽ/~HEIMjV>{s=ar|DzJqD'm\ ) , hR`W܋Ǒ(Q1^4|:!?/%Yz7}_VL`WNlu;bbէnVE3NŨln+c|\-pGs)^J_Ad|Kt.="T/Y^,R*o`0l^bԊn--ܫo?t't%6U$7mWM#6:C+41c:dUY7?ȒTkdh=ۈzŵ,xW}kU79վa(k 68R(e߷_LFj8+vR;a $ K ĵ]GIʺ'wCkK`HĆWnTP $v%}O+*or3ɠt MZ>9rN8F+ GxO&@ZXsSɞEfzPFP]ЖgiN{? "^ LΰIQ]QjCyFC5OIȬd&ВJ|!Ne*1yZW "!SP>mCܩ~eOlR 3)aIRWgŻwZ"H5$ny8KQ$/r%

一道疑惑的函数的题,是否存在这样的实数k.使得二次方程x2+(2k-1)x-(3k+2)=0有两个实数跟,切两根都在2与四之间,若存在请确定k范围,若不存在请说明理由
一道疑惑的函数的题,
是否存在这样的实数k.使得二次方程x2+(2k-1)x-(3k+2)=0有两个实数跟,切两根都在2与四之间,若存在请确定k范围,若不存在请说明理由

一道疑惑的函数的题,是否存在这样的实数k.使得二次方程x2+(2k-1)x-(3k+2)=0有两个实数跟,切两根都在2与四之间,若存在请确定k范围,若不存在请说明理由
首先方程有两实根,得判别式>=0既(2k-1)^2+4(3+2)>=0化简得4k^2+8k+9>=0因为它的判别式=8*8-4*4*9

如果你没告诉我答案,我会说:很简单啦.
设A,B为方程的两实根.
由伟大的韦达定理可得:
(1)A+B=1-2k(2)AB=-3k-2
因为A,B均在2与4之间,所以
A+B在4与8间,AB在4与16间,
所以联立不等式解出k的范围是在-2与-3.5间
答案跟你不同,你先看下吧.哪里错了你帮我指出下好吗?楼下的对了,是那样做的我错了咯~...

全部展开

如果你没告诉我答案,我会说:很简单啦.
设A,B为方程的两实根.
由伟大的韦达定理可得:
(1)A+B=1-2k(2)AB=-3k-2
因为A,B均在2与4之间,所以
A+B在4与8间,AB在4与16间,
所以联立不等式解出k的范围是在-2与-3.5间
答案跟你不同,你先看下吧.哪里错了你帮我指出下好吗?楼下的对了,是那样做的我错了咯~

收起

f(x)=x^2+(2k-1)x-(3k-2),方程的根就是此函数图像与x轴交点横坐标
二次项系数大于0,开口向上。
有两个实根则判别式不小于0
观察这函数的图像可以得出,
f(2)>0,f(4)>0 f(k-0.5)<=0
代入求解就可以了,得到k>0

首先方程有两实根,得判别式>=0既(2k-1)^2+4(3+2)>=0化简得4k^2+8k+9>=0因为它的判别式=8*8-4*4*9<0所以这个不等式恒成立.既k取任意实数.下面用函数的方法解:设y=x^2+(2k-1)x-(3k+2),因为两根都在2与四之间.所以对称轴在2与4之间.
得2<-(2k-1)/2<4得-3.5因为网页的原因草图没办法提供,只有你在...

全部展开

首先方程有两实根,得判别式>=0既(2k-1)^2+4(3+2)>=0化简得4k^2+8k+9>=0因为它的判别式=8*8-4*4*9<0所以这个不等式恒成立.既k取任意实数.下面用函数的方法解:设y=x^2+(2k-1)x-(3k+2),因为两根都在2与四之间.所以对称轴在2与4之间.
得2<-(2k-1)/2<4得-3.5因为网页的原因草图没办法提供,只有你在纸上画一下了.它的特征是:开口向上,对称轴在2与4之间,与x轴的两个交点也在2与4之间.你观察一下当x=2和x=4时y必须>0.
把2代入函数得y=2^2+(2k-1)*2-(3k+2)>0解得k>0与
-3.5

收起