@ yxue :

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/19 05:26:51
@ yxue :
xSjA~PHi `Q33DfmRHE/ ҋ_Qn۷p5$sΜ3ssrRܽcRQܬ;%;hy\VJMJh&vqA6ڛ^enk>ƫj14[cr\a@M0eF =j0x33&(1R1Kq?yLalL.5췀(|x?;|uHp֧&LȡNMۋ9 q 4njG'هQF3DQnT#htv0HYS^2 )_]lMzOާT-(FmqZy,5LMGJU l+6jRҡQ[]@y1lwO6تj+GDa-N"*T9wzc5h&'JĘ$1 i dz<h #^0pq݅{s?=ۿ "D,O֒)>|L=iA8 r(|;}'u

@ yxue :

@ yxue :

@ yxue :
证明:
2/loga ab +2/logb ab = 2 (1)
只需证明:
1/loga ab + 1/logb ab = 1 (2)
为此,令:
A=loga ab ,a^A=ab 取常用对数lg:Alga=lgab,A=lgab/lga (实际上用了换底公式)
B=logb ab ,b^B=ab 取常用对数lg:Blgb=lgab,B=lgab/lgb
(2)式变成:1/A + 1/B = lga/lgab + lgb/lgab=(lga+lgb)/lgab=1
即:1/loga ab + 1/logb = 1 (2)
成立,也即(1)式成立.证毕.

收起