设函数f(x)=3x2+a/x3,求正数a的取值范围,使任意X>0 都有f(x)≥20
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/27 22:27:02
x){nϦnHӨд50Nԯ0y@ZO{ڰEO[tdg-v
/> sMR>M/+Q* yoTa @,|`tTՇC :';z|(Őħ;7?S&|Ɨf ]gS[S+R/_tDY6yv@ S
设函数f(x)=3x2+a/x3,求正数a的取值范围,使任意X>0 都有f(x)≥20
设函数f(x)=3x2+a/x3,求正数a的取值范围,使任意X>0 都有f(x)≥20
设函数f(x)=3x2+a/x3,求正数a的取值范围,使任意X>0 都有f(x)≥20
f(x)=3x2+a/x3
= x2+x2+x2+a/2x3 + a/2x3
≥5次根号(x2×x2×x2×a/2x3 × a/2x3)(均值不等式)
=5次根号(a平方/4)
由题意f(x)≥20
故:5次根号(a平方/4)≥20
解得a≥80√5