几道高中立体几何题,急,P是△ABC所在平面α外一点,O是点P在平面α内的射影,若P点到△ABC的三个顶点等距离,那么O点是△ABC的——心,若P点到△ABC的三边等距离,且O点在△ABC内部,那么O点是△ABC

来源:学生作业帮助网 编辑:作业帮 时间:2024/11/06 05:16:10
几道高中立体几何题,急,P是△ABC所在平面α外一点,O是点P在平面α内的射影,若P点到△ABC的三个顶点等距离,那么O点是△ABC的——心,若P点到△ABC的三边等距离,且O点在△ABC内部,那么O点是△ABC
xSnA~gф\./pІJKkKK, .%|2ðWgv-5kٙ=; <ܽW%>; z̴ ^ 0Ō8;k}#fdvdP@ɶ<ɉ^NƪfNO󀇻E~> .gbbxُ|P9n([S EC@s_Aj43>V``w3ʆ+ge˟Ct"ovݍީFcLMBM"OګۅӤ2aauĐo"D6(߳…`+ rwLYwkT\VŬեZ̈kQ< DKh9&c;\/&HC>;~Y|3ڍA H,3b$bɍ0z />~ Sx-?P2j#%i=-20oIihe@;a4e#gɒ&w+k7, 2SQTb;4ۤIs^!G0

几道高中立体几何题,急,P是△ABC所在平面α外一点,O是点P在平面α内的射影,若P点到△ABC的三个顶点等距离,那么O点是△ABC的——心,若P点到△ABC的三边等距离,且O点在△ABC内部,那么O点是△ABC
几道高中立体几何题,急,
P是△ABC所在平面α外一点,O是点P在平面α内的射影,若P点到△ABC的三个顶点等距离,那么O点是△ABC的——心,若P点到△ABC的三边等距离,且O点在△ABC内部,那么O点是△ABC的—心?若PA,PB,PC两两互相垂直,那么O点是△ABC的—心?

几道高中立体几何题,急,P是△ABC所在平面α外一点,O是点P在平面α内的射影,若P点到△ABC的三个顶点等距离,那么O点是△ABC的——心,若P点到△ABC的三边等距离,且O点在△ABC内部,那么O点是△ABC
第一问
因为AO=BO=CO 所以设∠OAC=∠OCA=∠1 ∠OAB=∠OBA=∠2 ∠OBC=∠OCB=∠3
∠BAC+∠BCA+∠ABC=180°
∠1+∠2+∠3=三角形内角和的一半即90°
所以:∠OAC+∠OAB+∠OCA=90°
则CO延长线垂直AB
其余AO BO 同理
O为垂心
第二问
PO垂直ABC面 PX垂直BC PY垂直AC PZ垂直AB (BC垂直于PO 垂直于PX 就有BC垂直于面POX 以下同理)
则AC垂直于面POY AB垂直于面POZ
即OX垂直BC OY垂直AC OZ 垂直AB
又因为PX=PY=PZ 公用一边PO
则三角形POX POY POZ 全等
OX=OY=OZ
角平分线的点到两边距离相等
所以是角平分线焦点
即内心