f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,求证:存在a(0

来源:学生作业帮助网 编辑:作业帮 时间:2024/12/02 15:06:15
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,求证:存在a(0
x)KӨ|:gEa]/{{PD(i<1%MP@Ʀt D "}_`gCE7XigS7MUx13]$de` Q2 d!TOvDl?J-NauOh8G`OOWHԄNiq.Hpcu6<ٽ4Qz I?F 1Q

f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,求证:存在a(0
f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,求证:存在a(0

f(x)在[0,1]上连续,在(0,1)内可导,且f(1)=0,求证:存在a(0
设函数g(x)=f(x)*x
则g(0)=f(0)*0=0
g(1)=f(1)*1=0
由于f(x)在[0,1]上连续,在(0,1)内可导,则g(x)在[0,1]上连续,在(0,1)内可导,且g(0)=g(1),由罗尔定理
存在a∈(0,1)使g'(a)=0
g'(a)=f'(a)a+f(a)=0
f'(a)a=-f(a)
由于a∈(0,1)所以a≠0
所以f'(a)=-f(a)/a