f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
来源:学生作业帮助网 编辑:作业帮 时间:2024/11/17 13:28:17
xQN@1S2n;H ,ص!vgP^X$DyBƅ<Laaws=VWu82EvQU*vpQ;V>!{H5xOq&!J0EMЦȚ0^ Hͱۇ`5̿ 2ZzJ@t5
IL ȄY:es?-Wb,XM5a%p(\DiZ2ihʁk
ĉ20D4=o5̺]4:KOYc8%pMn.Ǘ,h02<%ip)}|1ZF8~2x)2DڻLb8
f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
1.换元,令x+y=m & x-y=n
则x=(m+n)/2,y=(m-n)/2
2.回代,得f(m,n)=[[(m+n)/2]^2-[(m-n)/2]^2]/[2*(m-n)/2*(m+n)/2]=2mn/(m^2-n^2)
3.m,n是符号变量 可以改写成x,y 则,f(x,y)=2xy/(x^2-y^2)
f(x+y,x-y)=(x^2-y^2)/2xy=2(x+y)(x-y)/((x+y)^2-(x-y)^2)
f(x,y)=2xy/(x^2-y^2)
令x+y=u,x-y=v,即有x=(u+v)/2,y=(u-v)/2,带入即可得f(u,v)的表达式,即是
将f(u,v)表达式中的u,v换成x,y即得f(x,y)的表达式。
令x+y=a,x-y=b,解出来x,y用a,b表示,带入后边
f(x+y,x-y)=(x^2-y^2)/2xy,求f(x,y)!
设f(x+y,x-y)=x^2-y^2,则f(x,y)=
若f(x+y,y/x)=x^2-y^2,则F(X,Y)=
已知f(x+y,y/x)=x^2-y^2,则f(x,y)=
f(x+y,y/x)=x^2-y^2求f(x,y)
f(x+y,y/x)=x^2-y^2,求f(x,y),详见里面
f(x+y,x-y)=2xy(x-y),求f(x,y)
f(xy,x-y)=x^2+y^2+xy;f(x,y)/∂x;f(x,y)/∂y
(X,Y) f(x,y)={12y^2,0
x-y/x-x+y/y-(x+y)(x-y)/y² y/x=2
f(x+y)=f(x)+f(y)+2xy
f(x^2-y^2,x-y)=x+y+x^2-xy,求f'(x,y)对y求导
已知F(X+Y,X-Y)=X^2*Y+X*Y^2,则F(X,Y)=?
设f(x+y,x-y)=x^2+y^2-x*y求f(x,y)
f[(x+y)/2]
f(x+Y)+f(x-y)=2f(x)f(Y) 求其是偶函数 急
求证f(x+y)+f(x-y)=2f(x)f(y)是周期函数
设f(x+y,x-y)=x^2+xy,求f(x,y)